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ABSTRACT 

Effects of wellbore radius on pressure derivatives of a vertical oil well is a major concern 

to oil and gas industry operators who intend to execute fluid production from a vertical 

oil well. Reservoir deliverability depends on several factors: the dimensionless wellbore 

radius. This study examines the influence of the dimensionless wellbore radius on the 

pressure and pressure derivative. A set of polynomials was implemented to calculate the 

dimensionless pressure variable and the pressure derivative. The polynomials were put 

into a computer program developed in the study to create a fast means through which the 

effect of wellbore radii can be studied easily. However, when several dimensionless radii 

were used as input parameters for the developed computer program, it was observed that 

the lower the dimensionless wellbore pressure, the higher the pressure derivative and vice 

versa. Also, lower dimensionless time yielded higher values of the dimensionless pressure 

variable. Results from the developed computer model were validated by comparing 

results from the model to those obtained from a published article while using the same 

input parameters (tD and rWD). Moreover, the percentage error was estimated to be less 

than 0.02%. 
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INTRODUCTION 

Operators in the oil and gas industry who plan to carry out fluid production from a vertical 

oil well are extremely concerned about the implications of wellbore radius on the pressure 

derivatives of a vertical oil well. The difficulties associated with using conventional well 

test methods have been completely overcome by the use of dimensionless pressure and 

dimensionless pressure derivative type curves, leading to significant advancements in the 

analysis of well tests [1]. On the derivative plot, heterogeneities that are hardly perceptible 

on the traditional plot of well testing data are magnified. Similarly, using the derivative 

plot, flow regimes exhibit distinct and unambiguous outlines [2]. Water coning is largely 

caused by well production pressure gradients from the pay zone well. Water coning has 

been regarded as the main challenge during production from an oil reservoir with bottom 

water [3]. In horizontal wells, water coning is the factor that determines how much of an 

increase in production rate is permissible [4]. Rising water-cut negatively influences 
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inflow performance and the tubing performance curve [5]. Wellbore pressure losses 

during horizontal well production increase the likelihood of conning in the later stages, 

making some of the horizontal well unproductive [6]. 

Adewole and Olafuyi [7] used the source and green functions to derive different 

dimensionless pressure and pressure derivatives for different directions of flow in an “A-

shaped” architecture experiencing bottom water and concluded that individual layer 

characterization requires properties from only the layer involved, while comprehensive 

reservoir characterization requires equivalent (total layers) properties. Eiroboyi and 

Adewole [8] developed type curves for a reservoir with bottom water drive using source 

and green functions. The dimensionless wellbore response and its derivative at early 

radial flow were calculated using the standard pressure derivative formula proposed by 

Edobhiye and Adewole [9]. Moreover, they concluded that it is possible to investigate the 

effects of reservoir and wellbore properties on the dimensionless pressure and 

dimensionless pressure derivatives distribution of a horizontal well in a reservoir subject 

to gas cap, edge water, and bottom water drive mechanisms.  

In previous research regarding dimensionless pressure and pressure derivatives, as 

presented in literature, numerical integration was used to compute PD and P'D. However, 

this procedure is often complex and difficult to use near the origin because of the 

asymptotic nature of the functions involved. Thus, this study employed a simpler 

approach using a set of polynomials that were easier to implement than numerical 

methods. More so, in a bid to apply these equations (polynomials) in calculating pressure 

derivatives for various dimensionless radii, this study developed a computer program. 

Furthermore, the computer program made it easy to investigate the influence of 

dimensionless wellbore radius on pressure derivatives, which was the major objective of 

this study. Therefore, this study seeks to study how wellbore radius influences the 

behaviour of dimensionless pressure and its derivative. 

 

METHODOLOGY 

Crossover point tcross 

The crossover point at a particular dimensionless radius is referred to as the dimensionless 

time (tD) at which boundary effects are felt. The choice between using the finite or infinite 

set of polynomials to calculate PD can be made once this crossover value of tD has been 

established because the finite polynomials do not provide reliable results for values of tD 

below this crossover point (tcross). By examining the intersection points of infinite and 

finite PD curve fits and using regression analysis, the value of tD at which boundary effects 

are exhibited was estimated from Eq. 1 and Eq. 2.   

𝑡𝑐𝑟𝑜𝑠𝑠 = 0.0980958(𝑟𝐷 − 1) + 0.100683(𝑟𝐷 − 1)2.03863     (1) 

For values of tD<tcross, the aquifer is infinite-acting; thus, the infinite-aquifer approach 

discussed in subsequent sections should be used. If otherwise, that is tD≥ tcross, then the 

polynomial for finitely-acting aquifer would be used. More so, dimensionless time is 

calculated as follows: 

                                                               𝑡𝐷 =
2.309𝑘𝑡

𝜇𝜑𝑐𝑡𝑟𝑜
2               (2) 



Romanian Journal of Petroleum & Gas Technology 

VOL. IV (LXXV) • No. 1/2023 

 

 

 

75 

Where t = time in years, 𝜇 =viscosity, ct=total compressibility, 𝜑 =porosity and                      

ro= reservoir outer radius. 

Determination of dimensionless pressure, PD 

a) Finite aquifers: Van Everdingen and Hurst model [10] is given by Eq. 11: 

        𝑃(𝑡𝐷) =
2

𝑟𝐷
2−1

(
1

4
+ 𝑡𝐷) −

3𝑟𝐷
4−4𝑟𝐷

4 log𝑒 𝑟𝐷−2𝑟𝐷
2−1

4(𝑟𝐷
2−1)

2 + 2 ∑
𝑒−𝛽𝑛

2
𝑡𝐷𝐽1

2(𝛽𝑛𝑟𝐷)

𝛽𝑛
2[𝑗1

2(𝛽𝑛𝑟𝐷)−𝑗1
2(𝛽𝑛)]

∞
𝑛=1          (3) 

Where, 

𝑡𝐷 = dimensionless time and is shown in Eq. 2, 

𝑟𝐷= the ratio of the aquifer radius to the reservoir radius (re/rw) and  

J1 refers to the Bessel function of order 1.  

While β defines the roots of the following equation.  

                                           𝐽1(𝛽𝑛𝑟𝐷)𝑌1(𝛽𝑛 − 𝐽1𝛽𝑛𝑌1(𝛽𝑛𝑟𝐷)) = 0        (4) 

Where J1 and Y1 are Bessel functions of order 1.  

However, Eq. 3 was expressed in a polynomial form as follows; 

𝑃𝐷 =
2

𝑟𝐷
2−1

(
1

4
+ 𝑡𝐷) −

3𝑟𝐷
4−4𝑟𝐷

4 log𝑒 𝑟𝐷−2𝑟𝐷
2−1

4(𝑟𝐷
2−1)

2 +
2𝑒−𝛽1

2
𝑡𝐷𝐽1

2(𝛽1𝑟𝐷)

𝛽1
2[𝑗1

2(𝛽1𝑟𝐷)−𝑗1
2(𝛽1)]

+
2𝑒−𝛽2

2
𝑡𝐷𝐽1

2(𝛽2𝑟𝐷)

𝛽2
2[𝑗1

2(𝛽2𝑟𝐷)−𝑗1
2(𝛽2)]

  (5) 

Where, 

𝛽1 = −0.00870415 − 1.08984 csch(𝑟𝐷) + 12.4458(𝑟𝐷)−2.8446 +
 3.4234(𝑟𝐷)−0.949162                    (6) 

𝛽2 = −0.0191642 − 2.47644 csch(𝑟𝐷) + 25.3343(𝑟𝐷)−2.73054 +
6.13184(𝑟𝐷)−0.939529                                                                                 (7) 

csch(x) refers to the hyperbolic cosecant function which is computed as follows; 

                                                       csch(𝑥) =
1

𝑒𝑥−𝑒−𝑥                (8) 

Also, the first order Bessel functions were computed as shown in Eq. 9 and Eq. 10 below; 

At condition: 0≤x<3.0 

𝐽1(𝑥) = [0.5 − 0.56249985 (
𝑥

3
)

2

+ 0.21093573 (
𝑥

3
)

4

− 0.03954289 (
𝑥

3
)

6

+

0.00443319 (
𝑥

3
)

8

− 0.00031761 (
𝑥

3
)

10

+ 0.00001109 (
𝑥

3
)

12

 ] 𝑥             (9) 

At condition: 3.0 ≤x< ∞ 

                                                      𝐽1(𝑥) = (𝑥)−0.5𝐹1(cos 𝜃1)            (10) 

𝐹1 = 𝑏0 + 𝑏1 (
3

𝑥
) + 𝑏2 (

3

𝑥
)

2

+ 𝑏3 (
3

𝑥
)

3

+ 𝑏4 (
3

𝑥
)

4

+ 𝑏5 (
3

𝑥
)

5

+ 𝑏6 (
3

𝑥
)

6

 

bo = 0.79788456, bl = 0.00000156, b2 = 0.01659667, b3 = 0.00017105,  

b4 = -0.00249511, bs = 0.00113653, and b6 = -0.00020033. 



Romanian Journal of Petroleum & Gas Technology 

VOL. IV (LXXV) • No. 1/2023 

 

 

 

76 

𝜃1 = 𝑥 − 2.35619449 + 0.12499612 (
3

𝑥
) + 0.00005650 (

3

𝑥
)

2

− 0.00637879 (
3

𝑥
)

3

+ 0.00074348 (
3

𝑥
)

4

+ 0.0079824 (
3

𝑥
)

5

− 0.00029166 (
3

𝑥
)

6

 

b) For Infinitely – acting aquifers: 

For infinite aquifers, the value of PD as a function of dimensionless time was determined 

using the Van Everdingen and Hurst model [10] as follows: 

                                                      𝑃𝐷 =
4

𝜋2 ∫
(1−𝑒−𝑢2𝑡𝐷)𝑑𝑢

𝑢3[𝐽1
2(𝑢)+𝑌1

2(𝑢)]
 

∞

0
            (11) 

An analytical solution to this integral was not available, and numerical methods were 

difficult to use near the origin because of the asymptotic nature of the function. Thus, for 

evaluation, the integral was broken into two parts such that Eq. 11 becomes, 

                               𝑃𝐷 =
4

𝜋2 ∫
(1−𝑒−𝑢2𝑡𝐷)𝑑𝑢

𝑢3[𝐽1
2(𝑢)+𝑌1

2(𝑢)]
 +  

4

𝜋2 ∫
(1−𝑒−𝑢2𝑡𝐷)𝑑𝑢

𝑢3[𝐽1
2(𝑢)+𝑌1

2(𝑢)]
 

∞

0

𝛿

0
           (12) 

Eq. 12 was solved analytically using non-linear regression to obtain a set of polynomial 

as shown in the following subsequent equations: 

Condition: At tD≤0.01, 

                                                                   𝑃𝐷 =
2

𝜋 √𝑡𝐷             (13) 

Condition: At 0.01≤ tD <500, 

                               𝑃𝐷 =
1107.5868(𝑡𝐷)0.5003552+37.60613tD+7.038188(𝑡𝐷)1.338479

95.13748+77.0034(𝑡𝐷)0.5003552+16.63856(𝑡𝐷)+(𝑡𝐷)1.338479           (14) 

Condition: At 500≤ tD, 

                                      𝑃𝐷 =
1

2
[log𝑒 𝑡𝐷] (1 +

1

2𝑡𝐷
) + 0.40454 (1 +

1

2𝑡𝐷
)          (15) 

Determination of pressure derivative, P'D 

a) Finite aquifers: Condition: tcross≤ tD 

                                         𝑃D
′ =

2

𝑟𝐷
2−1

−
2𝑒−𝛽1

2
𝑡𝐷𝐽1

2(𝛽1𝑟𝐷)

𝑗1
2(𝛽1𝑟𝐷)−𝑗1

2(𝛽1)
−

2𝑒−𝛽2
2

𝑡𝐷𝐽1
2(𝛽2𝑟𝐷)

𝑗1
2(𝛽2𝑟𝐷)−𝑗1

2(𝛽2)
          (16) 

b) Infinite aquifers: 

Condition 1: tD ≤ 0.01 

                                                                       𝑃D
′ =

1

√𝜋𝑡𝐷
             (17) 

Condition 2: 0.01≤ tD<500 

                                    𝑃D
′ =

𝑏0+𝑏1(𝑡𝐷)𝑏6+𝑏2(𝑡𝐷)𝑏7+𝑏3(𝑡𝐷)𝑏8+𝑏4(𝑡𝐷)𝑏9+𝑏5(𝑡𝐷)𝑏10

𝑏11+𝑏12(𝑡𝐷)𝑏7+𝑏13(𝑡𝐷)+(𝑡𝐷)𝑏9
           (18) 

Where, 

b0 = 3577.752441; b1 = 5121.404179; b2 = 552.462473; b3 = 364.062209;  

b4 = 26.908805; b5 = 896.239475; b6 = -0.499645; b7 = 0.5003552; b8 = 0.838834;  
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b9 = 1.338479; b10 = 0.338479; b11 = 95.13748; b12 = 77.0034; b13 = 16.63856. 

Condition 3: 500≤ tD 

                                                   𝑃D
′ =

1

2𝑡𝐷
[1 −

log𝑒(𝑡𝐷)

2𝑡𝐷
+

0.09546

𝑡𝐷
]                 (20) 

Computer model (EXPLORE) 

The computer model (EXPLORE) developed in this study is a reservoir investigative 

toolkit for examining the influence of dimensionless wellbore radius (rWD) on 

dimensionless pressure and pressure derivatives. The mathematical models discussed in 

the previous sections were incorporated into the developed toolkit “EXPLORE”. The 

toolkit, however, was developed to decide the appropriate correlation/polynomial 

depending on the conditions of tD and the cross-over point. The correlations to calculate 

pressure derivatives differ since the supposed aquifer may be acting finitely or infinitely. 

Furthermore, at a specified dimensionless time, tD, boundary effects can either be felt or 

may not be felt (because the pressure disturbance has reached the boundary). Even so, the 

software is intelligent enough to know the two conditions. Also, the software present 

semi-log plots of pressure derivatives against dimensionless time for evaluation purposes. 

The software was developed using Microsoft Visual C#. The splash screen and the 

simplified flowchart of the developed software “EXPLORE” is shown in Fig.1 and Fig.2.  

 
Fig. 1 Software splash screen. 

 

 

Fig. 2 Flowchart for the developed computer model (EXPLORE) 
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Computer model development 

First, all necessary functions were created in a class. These functions include: 

i. The hyperbolic cosecant function (csch(x)) 

ii. Bessel function of order 1 (J1(x)) 

iii. Dimensionless pressure function PD(rwD,tD). 

iv. Pressure derivative function P'D(rwD,tD). 

Assumptions made 

The assumptions made for the mathematical models that were employed in the 

determination of dimensionless pressure and pressure derivatives are stated below; 

i. The reservoir must be driven by an underground aquifer (i.e. a water drive reservoir 

with aquifer support) 

ii. Calculations were made based on a vertical oil well and no geometry or location was 

considered. 

iii. Dimensionless variables like dimensionless well bore radius, rWD, and dimensionless 

time is known. 

iv. A pseudo-steady state flow regime was assumed for either infinitely acting of finitely 

acting aquifers.   

 

RESULTS AND DISCUSSION 

Results from varying tD at fixed rwD 

While using the developed toolkit (EXPLORE), a number of dimensionless time tD, 

ranging from 0.001 to 10,000 were used as input parameter along with a fixed value of 

dimensionless wellbore radius (rwD) of 0.01. The result is represented in a semi-logarithm 

chart as shown in Fig. 3. From the chart, it was observed that dimensionless pressure, PD, 

increased exponentially from 0.02013 to 5.0. Meanwhile, pressure derivative was 

observed to have experienced a hyperbolic decrease from 17.84 to 4.9977E-05. This 

decrease however is reflective of the fact that pressure derivatives decrease at higher 

dimensionless time. 

 

Fig. 3 Dimensionless pressure and pressure derivative chart at rwD=0.01 
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Similarly, same procedure performed above was repeated for the following dimensionless 

wellbore radii: 5, 10, 20, 30, 50, 70 and 100. With a dimensionless radius of 5, 

dimensionless pressure PD increased gradually and uniformly from 0.02013 (at tD=0.01) 

to 9.31 (at tD=100). Thereafter, there was a huge spike in PD values at tD =1000 and 10,000 

respectively (see Fig. 4). This behaviour shows that PD is very sensitive to dimensionless 

time. Conversely, pressure derivative (P'D) decreased from 17.84 to 0.0833. It was also 

noticed that, from a dimensionless time of 10 and above, pressure derivative remained 

unchanged regardless of the increase in dimensionless time. Also, when the wellbore 

radius was adjusted to 10, the trend of the curve for dimensionless pressures against 

dimensionless time, remained same as that with a wellbore radius of 5. 

 
Fig. 4 Dimensionless pressure and pressure derivative chart at rwD=5 

Also, it was observed that the values of PD became smaller when compared to PD values 

at radius of 5. This is indicative of the fact that smaller wellbore radii often yield higher 

values of PD. Same behaviour was observed for P'D at rwD=10 as seen in Fig. 5.  

 
Fig. 5 Dimensionless pressure and pressure derivative calculations at rwD=10 and at rwD=13 
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More so, the values of P'D and PD were observed to give same result for dimensionless 

times less than 5, regardless of the value of rwD. Pressure derivatives at tD=10 was 

estimated to be approximately 0.04231. But P'D value maintained 0.0202 at dimensionless 

time greater than 10. The calculations of pressure derivatives at rwD=13 is as represented 

in Fig. 5. The same result as that with rwD=10 was obtained for dimensionless pressure 

(for tD values less than 50) at rwD=13. Moreover, the values of PD were observed to have 

reduced in quantity when compared to those obtained at rwD=10. This trend in data further 

justifies the fact that low wellbore dimensionless radius causes a corresponding increase 

in dimensionless pressure variable, PD, and vice versa. The aforementioned assertion still 

holds for pressure derivative (P'D).  

At tD values higher than 10, the values of pressure derivative remained constant. This 

shows that increasing dimensionless time to an exceedingly high value, will often have 

little to no effect on the underground aquifer influencing the oil reservoir. Furthermore, 

trying out wellbore radius of 20 and 30, the results obtained are illustrated in Fig. 6 and 

Fig. 7 respectively. The assertion that “high wellbore radius results in low pressure 

derivatives” still stands. Nevertheless, at a dimensionless wellbore radius of 50, a 

somewhat weird trend was observed for dimensionless pressure variable, PD as shown in 

Fig. 8.  

 

 

Fig. 6 Dimensionless pressure and pressure derivative calculations at rwD=20 
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Fig. 7 Dimensionless pressure and pressure derivative semi-log plot at rwD=30 

 

Fig. 8 Dimensionless pressure and pressure derivative semi-log plot at rwD=50 

 

The values of PD became so low that it hits negative at dimensionless times greater than 

100. At tD=1000, a spike was observed in PD as can be seen in Fig. 8. This spike is 

indicative that pressure derivatives and dimensionless variable are very sensitive to 

dimensionless time (tD) values. Pressure derivative value, P'D, also became negative at 
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tD=1000 and became positive at tD=10,000. Thus, reiterating the sensitivity of pressure 

derivatives to dimensionless time. Surprisingly, at wellbore radius of 100, no negative 

values were obtained for both dimensionless pressure, PD and pressure derivative P'D 

(refer to Fig. 9 for visual representation)  

 

Fig. 9 Dimensionless pressure and pressure derivative semi-log plot at rwD=100 

 

Results for sensitivity analysis with diverse rwD at fixed tD 

In this study, a range of dimensionless wellbore radii were examined at a fixed value of 

dimensionless time, so as to investigate their influence on pressure derivatives. This 

investigation was termed “sensitivity analysis”. Thirty random wellbore radii (starting 

from 5.0 and terminating at 125) were examined at a fixed dimensionless time of 0.001. 

The result of this investigation is shown in a semi-log plot of pressure derivative and of 

PD against wellbore radius as shown in Fig. 10.  

 

Fig. 10 Dimensionless wellbore radius sensitivity chart at tD=0.001 
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The values of PD and P'D were estimated as 0.1081 and 5.1811 respectively at tD=0.01 as 

seen in Fig. 11. Also, these values were observed to remain constant regardless of increase 

in rwD. At tD=0.5, PD and P'D values were calculated as 1.3783 and 0.09331 respectively.  

 

Fig. 11 Dimensionless wellbore radius sensitivity chart at tD=0.01 

Again, these values remained unchanged (just like the plot at tD=0.001) despite the wide 

range of wellbore radii that were considered as seen in Fig. 12.  

 

Fig. 12 Dimensionless wellbore radius sensitivity chart at tD=0.5 

 

At tD=5, it was observed that the values of PD and P'D declined at a dimensionless wellbore 

radius of 9 and thereafter, remained constant with increase in the value of wellbore radius. 

This trend is illustrated in Fig. 13. This behaviour is reflective of the fact that at values of 

dimensionless time greater than 1, small values of dimensionless wellbore radius tend to 

influence pressure derivatives by increasing their value. It therefore implies that small 
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wellbore radius results in high values of PD and P'D, thus, increasing the strength of the 

underground aquifer driving the vertical oil well. Likewise, at tD values of 10, 20, 30 and 

100, it was observed that PD and P'D decreased at wellbore radius of 9 then maintained 

constant values of PD and P'D at higher wellbore radius. 

 

Fig. 13 Dimensionless wellbore radius sensitivity chart at tD=5 

Fig. 14, Fig. 15, Fig. 16 and Fig. 17 shows the sensitivity plots at fixed tD of 10, 20, 30 

and 100 respectively. It was noticed that higher dimensionless time caused steeper 

decrease in pressure derivatives between rwD of 5 and 9.  

 

Fig. 14 Dimensionless wellbore radius sensitivity chart at tD=10 
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Fig. 15 Dimensionless wellbore radius sensitivity chart at tD=20 

 

Fig. 16 Dimensionless wellbore radius sensitivity chart at tD=30 
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Fig. 17: Dimensionless wellbore radius sensitivity chart at tD=100 

 

Fig. 17 shows a sensitivity chart at tD=100. The sharp decrease in pressure derivatives 

between rwD =5 and rwD =9, can be seen clearly, while Fig. 18 shows the calculated PD 

and P'D variables as performed by the developed computer model (EXPLORE). 

 

 

Fig. 18 Dimensionless wellbore radius sensitivity variables calculations at tD=100 
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Result validation  

By integrating some inputs of dimensionless radius and time, results from an Klins et al. 

[10] were used to validate the results produced by the software. Subsequently, the results 

from the developed software using the same inputs were compared analytically. 

Subsequently, the percentage error was computed by finding the difference between the 

two results and dividing the output by the published result (assumed to be the true value). 

Results obtained from this analysis for dimensionless pressure and pressure derivative are 

presented in Table 1 and Table 2, respectively. Invariably, the percentage errors computed 

were less than 0.02% for both PD and P'D. This reveals that the results obtained from the 

developed toolkit (EXPLORE) are very reliable. 

 

Table 1 Error analysis for dimensionless pressure calculations performed by EXPLORE. 

tD rwD PD (published) PD (computed) %Error 

20 10 1.969 1.9691 0.005079 

20 15 1.9589 1.9592 0.015315 

 

Table 2 Error analysis for pressure derivative calculations performed by EXPLORE 

tD rwD P'D (published) P'D (computed) %Error 

20 10 0.0247 0.02475 0.20242915 

20 15 0.0228 0.0228 0 

 

CONCLUSION 

This study has examined the influence of dimensionless wellbore radius on dimensionless 

pressure and pressure derivatives. These pressure variables help define the productivity 

of oil wells. This research focused on vertical oil wells. Pressure derivatives were 

calculated using Van-Everdingen aquifer models. EXPLORE was developed as software 

that analyzes pressure derivatives based on dimensionless time and wellbore radius. The 

software applies the correlations for infinitely acting and finitely acting aquifers. The 

study results show that a low dimensionless wellbore radius increases pressure derivative 

values, indicating high well productivity. High-pressure derivatives suggest the aquifer 

can move oil from the reservoir's pore throat to the wellbore. Sensitivity analysis was 

performed with different values of wellbore radius (rWD) using a fixed value of 

dimensionless time to examine the influence of rWD on dimensionless pressure, and 

pressure derivatives show that pressure derivatives peaked at less than 10 dimensionless 

wellbore radius. 

Nonetheless, at rWD greater than ten, the values of pressure derivative (P'D) and 

dimensionless pressure (PD) remained constant regardless of the increase in 

dimensionless wellbore radius (rWD). Higher dimensionless time values causes steeper 

trends (greater pressure derivative drops) from the lowest dimensionless radius for both 

PD and P'D. To conclude, error analysis was performed on the EXPLORE software 

results to validate the accuracy. The results were compared with Klins et al. [10] and had 

a percentage error of less than 0.02%, which is considered acceptable. 
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