

PIGGY BACK SEPARATOR DESIGN

Néhémie Bikayi Tshiani ^{1,2*}

Dona Kampata Mbwelele^{1,4}

Samuel Diangitukulu Ndimba^{1,3}

Franklin Muamba Kanangila¹

Joel Etshekodi Lohadje^{1,4}

¹ Exploration-Production Department, Faculty of Oil, Gas and Renewable Energies, University of Kinshasa, D.R. Congo

² Petroleum Engineering Department, Polytechnic Institute of the Advanced Sciences of Sfax, Tunisia

³ Mathematics Department, Faculty of Sciences and Technologies, University of Kinshasa, D.R. Congo

⁴ Service Géologique National du Congo, R.D. Congo

* email (corresponding author): nehemiebikayi@gmail.com

DOI: 10.51865/JPGT.2023.01.17

ABSTRACT

A PIGGY BACK separator is a device used in industrial oil and gas applications to separate a vapor-liquid mixture into its constituent phases. The aim of this study is to size the Piggy Back, a separator placed upstream of an electrostatic dehydrator to perform gas-liquid separation. In the course of this study, we sized the Piggy Back using manual calculations in accordance with the guidelines of the main standards and codes in force today, such as API 12J. To validate the manual assessment of the separator's dimensions, a static simulation was carried out using ASPEN HYSYS® software. Using the finally approved manual sizing methodology, and taking into account the Piggy Back separator's operational data, an economic evaluation was carried out to conclude that the design was cost-effective.

Keywords: Piggy Back, API 12J, ASPEN HYSYS®, manual sizing

1. INTRODUCTION

Before we start processing oil, we must first remove gas and free water from the well stream. This operation is essential to reduce the size of the liquids processing equipment. In this work, we will present the PIGGY BACK separator and detail the calculation procedures for sizing using the API 12J standard, and then compare the results obtained after simulation on ASPEN HYSYS software. The fluid produced at the wellhead generally consists of gas, oil, free water and emulsified water (water-oil emulsion), consists of gas, oil, free water and emulsified water (water-oil emulsion). [1],[2]

Piggy Back separators are equipment sometimes placed upstream of the dehydrator which enable the separation of quantities of gas or traces of gas in the liquid phase. It is often

necessary to separate the liquid and gas phases at some point in an operation or process. Since both wet gas flow conditions (or more generally gas/liquid conditions) and the required efficiency can vary considerably, a separator must be carefully selected to suit the specific task at hand. [3],[4],[5]

Fig.1. Piggy Back separator (Horizontal Knock Out Drum) [1]

The Piggy Back separator ensures a clean, dry gas at the outlet, and protects sensitive downstream equipment such as pressure reducers, control valves and flowmeters. In the case of steam, it improves heat exchange efficiency. Gas from the production well contains inherent impurities which not only accelerate corrosion of standard separators and control or transmission equipment, but also reduce the calorific value of the gas. These impurities and the treated gas must be removed downstream, before the oil and water are sent to a treatment facility known as a dehydrator. [4],[6]

Fig.2. Piggy Back separator with electrostatic dehydrator [10]

2. SIZING OF PIGGY BACK SEPARATOR USING API 12J

2.1. Calculation Method

STEP1: Collect data

Input parameters used for the Piggy Back calculation are summarized in Table 1 below.

Input parameters				
Gas flow rate Qg	3.8	MMSCFD		
Oil flow rate Q_o	2544	BPD		
Operating pressure P	1014	Psig		
Operating temperature T	60.8	°F		
Gas specific gravity SGg	0.70			
Oil density API	40	°API		
Molecular weight MW	56.3	lb/lb mol		
Gas compressibility Z	0.92			
Gas viscosity μ_g	0.014	ср		
Retention time API>35 (according to API 12J Appendix C 1.7)	1	Minute		
<i>Typical factor range K (According to API 12J Appendix table C 1.1)</i>	0.5	ft/s		

Table 1. Input parameters of Piggy Back according API 12J

STEP2: Gas operating density and Oil operating density

Using the API 12J standard (appendix D) standard we can calculate the gas operating density and oil operating density [7]:

$$\rho_g = 2.7 \times SG_g \times \frac{P}{TZ} \tag{1}$$

$$SG_{0=}\frac{141.5}{131.5+API} \tag{2}$$

$$\rho o = 62.4 \times SG_o \tag{3}$$

where:

 SG_g : gas specific gravity

T : operating temperature, $^{\circ}R$ ($^{\circ}R=^{\circ}F+460$)

$$\rho_g$$
: gas density, lb/ft³

$$\rho_o$$
 : oil density, lb /ft³

P: operating pressure, Psia

Z : compressibility factor

STEP3: The maximum allowable superficial velocity of the gas

Using API 12J Appendix C1.1 we can calculate the maximum allowable superficial velocity of the gas [7]:

$$Va = \sqrt{\frac{\rho_l - \rho_g}{\rho_l}} \tag{4}$$

where:

 V_a : maximum allowable superficial velocity, ft/s

 ρ_g : gas operating density, lb/ft³

 $\rho_{o}=\rho_{l}$: oil operating density, lb/ft³

K : typical factor range, ft/s.

STEP4: Calculation of actual gas flow rate and gas area

Using API 12J (Appendix D) we can calculate the actual gas flow rate and the minimum gas area. [7],[8].

$$Q_{g,a} = \frac{Q_g \times MW}{379.5 \times 86400 \times \rho_g} \tag{5}$$

$$A_{gmin} = \frac{Q_{g,a}}{V_a} \tag{6}$$

knowing the minimum gas area we can deduce the minimum ID of separator:

$$D = \sqrt{\frac{4 \times A_{gmin}}{\pi}} \tag{7}$$

where:

1 day=86400sec

molar volume =22.4l=379.5 scf

 $Q_{g,a}$: actual gas flow rate, f t³/s

 Q_g : gas flow rate, Scf/day

 V_a : maximum allowable superficial velocity, ft/s

 ρ_g : gas operating density, lb/ft³

MW: Molecular weight, lb/lb.mol

 A_{gmin} : gas minimum area, ft³

D : the minimum Internal diameter of separator ft.(1ft=12inch)

STEP5: Calculation of liquid volume (excluding bottom head)

Using API 12J Appendix C 1.6, we can calculate Liquid volume [7]:

$$V = \frac{\pi D_{Selected/_4 \times L \times NLL}}{12^2 \times 5.614} \tag{8}$$

knowing the liquid volume we can deduce the liquid capacity of separator:

$$W = \frac{1440 \times V}{t} \tag{9}$$

where:

V: Liquid volume (excluding bottom head) in bbl,

*D*_{selected} : Next larger and appropriate size, inch

L: length seam to seam ft.

NLL : Normal liquid level

W: Liquid capacity of separator should be more than input value, in BPD (W>Qo).

t : retention time, minute

The slenderness ratio must be between 2.5 and 5 (2.5<L/D<5) (according to API 12J).

by choosing V = Vmin and L = Lmin, the minimum liquid capacity that must be available So we can calculate Vmin, the minimum liquid volume [7]:

$$V_{min} = \frac{W_{min} \times t}{1440} \tag{10}$$

with Wmin=Qo=2544 bpd

Knowing Vmin we can deduce Lmin:

$$L_{min} = \frac{V_{min} \times 144 \times 5.614}{\pi D^2 /_4 \times NLL} \tag{11}$$

According to the calculations, there are several minimum lengths that meet the following criteria: $W \ge Qo$ and 2.5<L/D<5.

To match our results with those of the software, we choose L=10ft which must be greater than Lmin which meets all the criteria. The table 2 illustrates the choice of L > Lmin

Incrementing			
Lmin (ft)	Dselected (in)		
7	36		
7.42	35		
7.64	34.5		
7.86	34		
8.35	33		
8.61	32.5		
8.88	32		
9.16	31.5		

Table 2. Incrementing for the calculation of L_{min}

3. SIZING OF FEED AND OUTLET NOZZLES

Using Shell DEP 31.22.05.11-Gen « Gas/Liquid Separators appendix II for sizing of Feed and Outlet Nozzles. [3]

STEP1: Calculation of mixture density

Referring to Appendix II we can calculate the mixture density.

$$\rho_m = \frac{Mg + Mo}{Qg + Qo} \tag{12}$$

where:

 ρ_m : mixture density, kg/m³

 M_g : mass flow rate of gas, kg/s

 M_o : mass flow rate of oil, kg/s

 Q_g : volumetric gas flow rate, m³/s

 Q_o : volumetric oil flow rate, m³/s

STEP2: Calculation of mixture velocity

Referring to Appendix II we can calculate the mixture velocity.

$$Vm = \frac{Qg + Qo}{\frac{\pi D^2}{4}} \tag{13}$$

where:

 V_m : the velocity of the mixture in the inlet nozzle, m/s,

D : minimum internal diameter of vessel, m,

 Q_g : volumetric gas flow rate, m³/s

 Q_o : volumetric oil flow rate, m³/s

Table 3. Type of nozzle according to their criterion

Criterion	Туре
For $\rho_m V_{m,in}^2 \leq 1400$	Horizontal pipe
For $\rho_m V_{m,in}^2 \leq 2100$	Open half hose
For $\rho_m V_{m,in}^2 \leq 8000$	Schopentoeter

STEP3: Calculation of feed inlet diameter

Referring to Appendix II we can calculate feed inlet diameter using the following equation:

$$d_1 = \sqrt{\frac{4Q_o}{\pi V_m}} \tag{14}$$

where:

 d_1 : feed inlet diameter, m.

 V_m : the velocity of the mixture in the inlet nozzle, m/s

STEP4: Calculation of gas velocity

Referring to Appendix II we can calculate the gas velocity using the following equation:

$$V_g = \sqrt{\frac{4500}{\pi\rho_g}} \tag{15}$$

where:

 V_g : gas velocity, m/s.

 ρ_g : gas density, kg/m³

STEP5: Calculation of gas outlet diameter (m)

Using Appendix II we can calculate the gas outlet diameter:

$$d_2 = \sqrt{\frac{4Q_g}{\pi V_g}} \tag{16}$$

where:

 d_2 : gas outlet diameter, m

 V_g : gas velocity, m/s

 Q_g : volumetric gas flow rate, m³/s

STEP6: Calculation of liquid outlet diameter

Using Appendix II we can calculate the liquid outlet diameter.

$$d_3 = \sqrt{\frac{4Q_o}{\pi V_l}} \tag{17}$$

where:

 d_3 : liquid outlet diameter, m

 V_l : liquid velocity, m/s

 Q_o : volumetric oil flow rate, m³/s.

The diameter of the liquid outlet nozzle, d_3 , shall be chosen such that the liquid velocity does not exceed 1 m/s. (According to DEP 31.22.05.11-Gen «Gas/Liquid Separators» appendix II).

4. ASPEN HYSYS® SIMULATION

Aspen HYSYS is the industry leading simulation software for oil and gas, refining, and engineering process. With an extensive array of unit operations, specialized work environments, and a robust solver, modeling in Aspen HYSYS enables the user to: [9]

- Improve equipment design and performance;
- Monitor safety and operational issues in the plant;
- Identify energy savings opportunities;
- Optimize processing capacity and operating conditions;

- Perform economic evaluation to realize savings in the process design Aspen Hysys builds upon the legacy modeling environment, adding increased value with integrated products and an improved user experience. [9]

4.1. Procedure for creating an Aspen HYSYS model

1. Start the program, From Start Menu, Select All Programs » Aspen Tech » Process Modeling V9.x » Aspen HYSYS » Aspen HYSYS [9]

- 2. First, Start a new case
- 3. Add the Components (fig. 3)

Component List View: Comp	oonent List - 1 [HYSYS Dat	abanks] × 🛨					
Source Databank: HYSYS				Select:	Pure Components	• Filter:	All Families
Component	Туре	Group		Search for:		Search by:	Full Name/Synonym
Nitrogen	Pure Component						
CO2	Pure Component			Simulat	tion Name	Full Name / Synonym	Formula
H2S	Pure Component		< Add		n-Octane	C8	C8H18
Methane	Pure Component				n-Nonane	C9	C9H20
Ethane	Pure Component				n-Decane	C10	C10H22
Propane	Pure Component		Replace		n-C11	C11	C11H24
i-Butane	Pure Component				n-C12	C12	C12H26
n-Butane	Pure Component				n-C13	C13	C13H28
i-Pentane	Pure Component		Remove		n-C14	C14	C14H30
n-Pentane	Pure Component				n-C15	C15	C15H32
n-Hexane	Pure Component				n-C16	C16	C16H34
n-Heptane	Pure Component				n-C17	C17	C17H36
H2O	Pure Component				n-C18	C18	C18H38
					n-C19	C19	C19H40
					n-C20	C20	C20H42
Status: OK Activer Windows							
•							activer Windows.

Fig.3. Adding the Components with Aspen HYSYS.

4. Select the fluid package; in this case, select Peng-Robinson (fig. 4)

Fig.4. Select the fluid package in Aspen HYSYS simulation [9]

5. Drawing the flow sheet (fig. 5, 6 and 7)

Fig.5. Drawing the flow sheet with Aspen HYSYS simulation.

parator: D-201				
Design Reacti	ons Rating Worksheet Dynamics			
Worksheet		4	6	Gas Flow
Conditions	Nitrogen	0,0197	0,0146	0,1334
roperties	CO2	0,1164	0,1138	0,1742
Composition	H2S	0,0047	0,0048	0,0031
PF Specs	Methane	0,2072	0,1884	0,6269
	Ethane	0,0441	0,0444	0,0375
	Propane	0,0353	0,0364	0,0113
	i-Butane	0,0186	0,0193	0,0030
	n-Butane	0,0294	0,0306	0,0035
	i-Pentane	0,0280	0,0292	0,0017
	n-Pentane	0,0279	0,0291	0,0013
	n-Hexane	0,0633	0,0660	0,0012
	n-Heptane	0,3000	0,3133	0,0024
	H2O	0,1055	0,1102	0,0005

Fig.6. Composition of crude oil in Aspen HYSYS simulation

Fig.7. Process diagram flow using Aspen HYSYS simulation.

5. RESULTS AND DISCUSSIONS

Results of Piggy Back separator sizing according API 12J are presented in table 4.

Results				
Gas operating density ρ_g	4	lb/ft3		
Oil operating density ρ_o	51.5	lb/ft3		
Maximum allowable superficial velocity V_a	1.722	ft/sec		
Actual Volume Flow of gas $Q_{g,a}$	1.63	ft3/sec		
Minimum gas flow area A _{g,min}	0.95	ft2		
D minimum diameter of separator	13.16	in		
Next larger and appropriate size $D_{selected}$	34	in		
Tangent to tangente L	10	ft		
Liquid volume (excluding bottom head) V	1.93	bbl		
Liquid capacity of separator W	2786.85	BPD		
ratio L/D	3.3	-		

Table 4. Results of Piggy Back separator sizing according API 12J

5.1. Sizing of Feed and Outlet Nozzles

Using Shell DEP 31.22.05.11-Gen, Gas/Liquid Separators appendix II for sizing of Feed and Outlet Nozzles.

Results				
<i>Mixture density,</i> ρ_m	5.77	kg/m3		
Mixture velocity, V _m	0.328	m/s		
Feed inlet diameter,d ₁	0.13	m		
Gas velocity, V_g	22.70	m/s		
Gas outlet diameter, d ₂	0.26	m		
<i>liquid outlet diameter,</i> d_3	0.08	m		

Design Reacti	ons Rating Worksheet Dynamics			
Worksheet	Name	4	6	Gas Flow
Conditions	Vapour	0,0427	0,0000	1,0000
Properties	Temperature [F]	62,47	62,47	62,47
Composition	Pressure [psia]	1001	1001	1001
PF Specs	Molar Flow [lbmole/hr]	422,6	404,6	18,06
	Mass Flow [lb/hr]	2,378e+004	2,335e+004	436,1
	Std Ideal Liq Vol Flow [barrel/day]	2610	2544	65,95
	Molar Enthalpy [Btu/Ibmole]	-8,573e+004	-8,718e+004	-5,333e+004
	Molar Entropy [Btu/Ibmole-F]	25,58	25,17	34,85
	Heat Flow [Btu/hr]	-3,623e+007	-3,527e+007	-9,633e+005

Fig.8. Fluids properties using Aspen HYSYS.

Fig.9. Fluids properties with PFD using Aspen HYSYS.

Romanian Journal of Petroleum & Gas Technology VOL. IV (LXXV) • No. 1/2023

Vessel Volume [ft3] Vessel Diameter [ft] Length [ft] Liq Volume Percent [%] Liq Percent Level [%]	67,65 2,625 12,50 50,00 50,00
Vessel Volume [ft3] Vessel Diameter [ft] Length [ft] Liq Volume Percent [%] Liq Percent Level [%]	67,65 2,625 12,50 50,00 50,00
Vessel Diameter [ft] Length [ft] Liq Volume Percent [%] Liq Percent Level [%]	2,625 12,50 50,00 50,00
Length [ft] Liq Volume Percent [%] Liq Percent Level [%]	12,50 50,00 50,00
Liq Volume Percent [%] Liq Percent Level [%]	50,00 50,00
Liq Percent Level [%]	50,00
Level Calculator	Horizontal cylinder
Fraction Calculator	Use levels and nozzles
Fraction Calculator	Use levels and noz
	Level Calculator Fraction Calculator

Fig.10. Dynamic specifications using Aspen HYSYS.

Design Reactio	ons Rating Worksheet Dynam	nics		
Rating	Vessel Dimensions			
Sizing	Base Elevation Relative to Gro	und Level	0,00	000 ft
Nozzles				
Heat Loss				
Level Taps	Diameter 2,95	3 ft Height/Length	11,	,94 ft
- ··				
Options				
Options COver Setup				
Options C.Over Setup C.Over Results	Nozzle Parameters			
Options C.Over Setup C.Over Results	Nozzle Parameters	4	Gas Flow	6
Options C.Over Setup C.Over Results	Nozzle Parameters Diameter [ft]	4 0,1640	Gas Flow 0,1640	6 0,1640
Options C.Over Setup C.Over Results	Nozzle Parameters Diameter [ft] Elevation (Base) [ft]	4 0,1640 2,953	Gas Flow 0,1640 2,953	6 0,1640 0,0000
Options C.Over Setup C.Over Results	Nozzle Parameters Diameter [ft] Elevation (Base) [ft] Elevation (Ground) [ft]	4 0,1640 2,953 2,953	Gas Flow 0,1640 2,953 2,953	6 0,1640 0,0000 0,0000

Fig.11. Output of sizing Piggy Back using ASPEN HYSYS.

	•API 12J	ASPEN HYSYS®
L length seam to seam (ft)	10	11.94
D Minimum of separator (in)	34	35.43

Table 6. Comparative Result of Piggy Back separator sizing

Comparing the results found in the API 12J standard and those of the software, we can see that the values found with the Aspen HYSYS simulation are higher than those calculated manually using the API 12J standard.

6. ECONOMIC EVALUATION USING ASPEN HYSYS

As part of an economic study for the same flow rate, several diameters were simulated in order to choose the optimum design. As the diameter determines the flow rate and capacity of the separator, we can deduce that the choice of diameter influences the price of the Piggy Back separator.

Length(ft)	D(in)	Price (US\$)
8	36	15020
8.5	35	14730
9	34.5	14870
10	34	15360
10.5	33	15030
11	32.5	15320
11.5	32	15030
12.5	31	15490

 Table 7. Economic Assessment Outcomes.

Referring to the result of the table above (Table 7), the cost effective design is:

Length(ft)	D(in)	Price (US\$)
8.5	35	14730

7. CONCLUSION

The paper presents sizing calculations of the Piggy Back separator using API 12J standard. The dimensions obtained are realistic and experimental, with a few corrections to satisfy the slenderness ratio. In addition, we dimensioned the various nozzles of the Piggy Back and evaluated the fluid flow velocities. To validate the manual sizing, we will use the Aspen HYSYS simulation. We presented the procedures and methods for sizing the Piggy Back for gas-liquid treatment. Next, a comparison was made between theoretical results and those obtained with Aspen HYSYS[®]. Differences in length and diameter were observed, some of them minimal.

REFERENCES

[1] Arnold K., Stewart M., Design of oil-handling systems and facilities, Second Edition, USA, 1998.

[2] Bothamley, M., Gas/liquid Separators: Quantifying separation performance, USA, 2015.

[3] Dutch/Shell Group, Manual: Liquid/liquid and gas/liquid/liquid separators - type selection and design rules, Design and Engineering Practice used by companies of the

Royal Dutch/Shell Group. Available on: http://petrowiki.org/Oil and gas separators. January 2008

[4] Richard Sivalls C., Oil and Gas Separation Design Manual. Sivalls, Inc. Box 2792 Odessa, Texas 79760, Feb 2009.

[5] Manning F.S., Thompson. R.E., Oilfield Processing of Petroleum, Tulsa, Oklahoma, PennWell Publishing Company, 1995

[6] Nelson W.L., Petroleum Refinery Engineering, 4th ed. McGraw-Hill, New York, 1958

[7] API SPEC 12 J for oil and gas separator. API Specification 12J (SPEC 12J). Seventh Edition. October 1989.

[8] Viska M., Separator Vessel Selection and Sizing (Engineering Design Guideline). Malaysia, January 2011.

[9] Guerra, M.J., Overview and Best Practices for Optimum Simulations Aspen Process Engineering Webinar, Spain, 2006.

[10] IPS group, Replacing vessels in poor condition Project, Tunisia, February 2021

Received: May 2023; Revised: June 2023; Accepted: June 2023; Published: June 2023