Best Available Technology to Reduce Emissions of Pollutants from Oil Refining Industry

Dorin Stănică-Ezeanu

Universitatea Petrol-Gaze din Ploiești, Bd. București 39, Ploiești, Romania e-mail: dorsta@upg-ploiesti.ro

Abstract

This paper presents a typical analysis concerning the reduction of pollutants emissions into the air from oil refining industry by using the Best Available Technology procedure. The pollutants ejected in atmosphere as SO_2 , NO_x and volatile organic compounds (VOC) were studied and their reduction was related with investment and operating costs, with efficiency of the cleaning process and with other unit' impacts.

Key words: BAT, pollutant, fuel, air, emissions

Introduction

The term "Best Available Technology" (BAT) is taken to mean the latest stage of development (state of the art) of processes, of facilities or of methods of operation which indicate the practical suitability of a particular measure for limiting discharges [1].

In determining whether a set of processes, facilities and methods of operation constitute the best available technology in general or individual cases, special consideration should be given to:

- comparable processes, facilities or methods of operation which have been recently successfully tried out;
- o technological advances and changes in scientific knowledge and understanding;
- the economic feasibility of such technology;
- time limits for application;
- the nature and volume of the effluents concerned;
- the precautionary principle, i.e. action should be taken when there is reason to assume that certain damage or harmful effects on the living resources of the sea are likely to be caused by discharged substances, even where there is no scientific evidence to prove a causal link between discharges and effects caused by substances.

In a previous paper we have presented a case study concerning the Best Available Technology applied into a Fluid Catalytic Cracking in order to reduce the emissions of pollutants in atmosphere [2]. It was also presented the legislative system and emissions limits for SO_2 , NO_x and particulates.

BAT Applied to Refining Industry

Best Available Technology in the refining industry is different in function of methodological approaches like:

- to consider refinery as a whole (black box = bubble) and identify global emissions limits no referring explicit to any given technology;
- to make a breakdown of the refinery in various elementary units or functions (group of units) and then to identify the BAT for these units/functions and decide emissions units for each one.

Both approaches have their advantages and disadvantages (table 1):

Approach	Advantage	Disadvantage	References
GLOBAL (Bubble)	a. Simple b. Easy to crate a standard	a. Not preciseb. Not too explicit for technological analysis	Many directives from EC
FUNCTION	a. Not too complex b. Rigorous c. Systematic	Global emissions not taken into account	Other technical notes
UNIT	a. Systematic b. Rigorous	a. Very complex b. "Old-fashioned" when new process appear	Choice made in USA

Table 1. Comparison of the methodological approaches [3]*

* In certain case the "unit/function" approach is most rigorous and is used in UE member states. In the other cases, global (bubble) approach is more flexible and gives industry the choice on how to implement technologies to achieve emissions limits. It is used in several member states, especially for establishing SO_2 emissions limits.

The functions which may lead to noticeable emissions are:

- o Sulfur recovery (SRU);
- Fluid catalytic cracking (FCC);
- Coking and other thermal conversion processes;
- Storage and loading.

Many of other processes of the refinery are carried-out in closed systems and have insignificant emission under normal conditions. One exception is the excess gas produced in the case of a unit malfunctioning. This gas is collected into the flare gas system. This flare gas system will be analyzed together with the refinery fuel system.

To make an assessment of the inter-functional aspects of managing a refinery with a view to air emissions, the most important aspects are:

- o Fuel management;
- o Catalyst management;
- o Operational control and design measures.

This assessment includes a general review of the "state of the art" together with possible Best Available Technologies that may be used for reducing emissions. This approach has led to the identification of the technologies which are listed in the table 2 and will be analyzed in detail in following sections.

BAT Analysis for Sulfur Recovery Unit (SRU)

The chemical reactions in Sulfur recovery unit are:

a. In the combustion furnace:

 $H_2S + 3/2 O_2 \rightarrow SO_2 + H_2O$

b. In reactors (2 or 3 stages) $SO_2 + 2 H_2S \rightarrow 3/2 S + 2 H_2O$

Global yield in terms of sulfur recovery can be calculated with the following relation:

YIELD (% mass) = 100 x (Sulfur production) / (Sulfur content in the sour gas) (1)

A typical yield of 2 stage SRU = 94 - 96 %. When the gas flow is lower than specified design parameters the yield decreases rapidly, and in this situation sulfur emissions may increase.

	1	UNCTIONS	INTER-FUNCTIONAL ASPECTS		
Pollutant	Sulfur recovery	Storage/ Loading	Fuel	Operational design	Waste water treatment
SO ₂	-3 ^{-rd} reactor -new design - tail gas clean- up unit	_	 Flue gas desulphurization SO₂management Use of low sulfur fuels 	_	_
NO _x	_	_	-Low NO _x burner - Selective catalytic reduction -Thermal de-NO _x	_	_
VOC	_	-Floating roof or cover -Vapor recuperation system		- Monitoring -Maintenance	- Float cover - Drums
Particulates	_		- Cyclone - Multi-cyclones -Electrostatic precipitator -Wet scrubber	_	_

Table 2. Technologies to be analyzed for pollutant emissions reduction [4]

Most of refineries have 2 or more SR units installed. Normally they operate under shared load. If one unit is shut down for any reason the majority of its load can be switched to the other running unit minimizing the increase in emissions. If required, changes can then be made to the main process units to reduce the quantity of H_2S produced.

Emissions limits for a SRU should then take into account the 2 parameters: yield and availability, in addition to its capacity.

With the exception of CO_2 arising from the combustion furnaces there are no other notable emissions from the SRU other than SO_2 .

Technologies to Prevent/Reduce Emissions

Tail gas from a SRU contains SO_2 and H_2S totaling 5% of total sulfur intake for a plant with a yield of 95%. For a production of 30 000 tons of S/year, sulfur emissions are 1580 tons (or 3160 of SO_2).

Improvement of the yield and consequently reduction of sulfur emissions can be obtained through for principal technologies and/or a combination of them:

- o addition of a third reactor;
- o improvement of the performance of reactors through new design (new units);
- o addition of a tail gas clean-up unit (TGCU).

These technologies are widely considered as the best available to prevent/reduce SO_2 emissions. For instance, the addition of a TGCU to a three stage SRU achieves at design conditions yields in the range of 98 - 99,9%. But it is important to know that the efficiency of SRU may fall of at flows below design. The BAT analysis regarding SO_2 emission control for Sulfur recovery unit is shown in table 3.

Table 3. Analysis of BAT regarding SO₂ emission control (SRU) Capacity of the unit: 30 000 t/yr of Sulfur production (yield = 94 - 96%, 2 stages) Initial pollutant concentration: 34 000 mg SO_x/Nm³; Total SO₂ quantity: 2000 t/yr

Name of technology	3-rd Reactor	3-rd Reactor *Improved Reactor Design *Improved catalyst	Tail gas clean-up unit
Overall eficiency	97 %	98-99 %	98 – 99,9 %
Investment cost	2 Million Euro	2,5 Million Euro	3 – 10 Million Euro
Operating cost	0,1 Million	0,1 Million	0,1 – 0,5 Million
Operating cost	Euro/yr	Euro/yr	Euro/yr
Other impacts	Negligible	Negligible	Increased energy consumption

BAT Analysis for Storage and Loading

Crude oil, other feedstock and petroleum products are stored in various tanks and supplied to and shipped from refineries by:

- o pipelines;
- o tank trucks;
- o rail tank cars;
- o barges;
- o sea-going vessels.

There are two major sources of VOC emissions from storage and loading as:

- breathing losses (in tanks);
- o working losses (displacement and withdrawal).

Control of Emissions from Storage

The bulk storage of volatile products takes place in the following tanks:

- floating roof tanks with efficient seals or fixed roof tanks incorporating an internal floating roof with high efficiently seals;
- fixed roof tanks which, for a given product or intermediate, have balancing lines or other means for vapor recovery (absorption etc.)

Control of Emissions from Loading/Unloading

A. Vessels and barges: displaced vapor containing air/gas recycled or routed through a vapor recovery unit or incinerator unit;

B. Rail tanks/road trucks: for loading/unloading of rail tanks or road trucks there are two alternatives:

- 1. *Bottom loading*: the loading/unloading pipe is flange connected to a nozzle situated at the lowest point of the tank. A vent pipe on top of the tank is connected to a gas balancing line;
- 2. *Top loading*: a flexible joint pipe is introduced into the tank through the upper tank opening. The tank opening should be closed by means of a flexible, elastic cone fixed to the filling pipe or by other means. The displaced air/gas is collected by a second line and treated as described above.

The available technologies for emissions decreasing are:

- o Incineration of vented products in process heaters, special combustors or flares;
- Vapors recovery units, by:
 - a gas collecting or balancing system;
 - a recovery system utilizing adsorption, absorption, condensation or incineration of VOC.

The VOC emission control by BAT analysis for storage and loading unit is presented in table 4.

Table 4. Analysis of BAT regarding VOC emission control (Storage and loading) Storage emissions = 0,19% of throughput of volatile products with fixed roof tanks Loading emissions = 0,05% of throughput of volatile products without vapor recovery

Name of technology	Floating roof tanks	Fixed roof internal cover	Secondary seals for	Vapor recovery for fixed	-	overy systems oading)
		tanks	gasoline storage	tanks	Single stage	Double stage
Efficiency	95 % (0,009% on throughput)	90 % (0,02% on throughput)	98 %	93-99% (down to 10 g/Nm ³)	93-99% (down to 10 g/Nm ³)	Near 100% (down to 150 mg/Nm ³)
Investment cost	0,26 Million Euro per tank (D = 20 m)	0,2 Million Euro per tank (D = 20 m)	140 Euro/ linear meter	1 Million Euro for 4 tanks (D = 20m)	1,3 Million Euro for 4 tanks (D = 20 m)	1,8 Million Euro for 4 tanks (D = 20m)
Operating cost		o operating costs gs give opportu		0,05 Million Euro/yr	0,05 Million Euro/yr	0,12 Million Euro/yr
Other impacts	-	-	-	Recovery of products	Recovery of products	Recovery of products

Fuel Management

Fuel management has a primary objective of optimizing refinery operating costs and in this BAT context it involves the effective utilization of refinery hydrocarbon streams for the production of process heat and utilities (steam and/or power) while minimizing the impact of the environment.

The following factors may impose major constraints of the fuel system:

- refinery configuration and crude oil type (sulfur content);
- o fuel requirements in relation to quantity and quality of available fuels;
- o safety and environmental restrictions;
- o climate and/or local conditions;
- o operational flexibility or limitations with reference system;
- complexity with respect to number of units and their various interdependent operational constraints;
- o age of the various units and technology restrictions;

o high degree of process and energy integration of various units.

The structure of refinery fuels is quite simple. There are three types of fuels: gas, liquid and solid. The gas fuel source is assured by the refinery light gas fraction and by natural gas from the external producers. The liquid fuel is a mixture of liquid residues from crude oil distillation, thermal processes, catalytic cracking and other heavy fractions without other utilization.

Aspects of NO_x Emissions of Refining Fuels

Fuel gas composition, burner design, furnace design and operating conditions determine NO_x from gas firing (Table 5)

	-		_					
Table 5	MO	emissions	rongog fo	rovicting	and now	aquinman	to MO	αNO
Table 5.	$1NO_{v}$	ennissions	Tanges to	I EXISTING	and new	equipmen	15 UNO_{v}	as INU21

Equipment type	Gas (Natural + refinery)	Liquid refinery fuel (Atmospheric and Vacuum residue)	Particulates (fuel oil firing)
Process furnaces	160 - 1300	280 - 1000	500 - 1000
Boilers	280 - 1100	500 - 1000	200 - 250

A. Existing (mg/Nm³)

Gas turbines (g	(GJ)
-----------------	------

Fuel gas type	Without steam injection	With steam injection
Cat cracker off gas	320 - 350	125 - 140
Natural gas	240 -700	100 - 120

B. Expected NO_x for new furnaces with optimal burner and furnace design

Process furnaces	Gas (Natural + refinery)	Liquid refinery fuel (Atmospheric and Vacuum residue)	Particulates (fuel oil firing)
Process furnaces (mg/Nm ³)	100 - 120	About 250	About 500
Boilers (mg/Nm ³)	60 - 120	About 250	About 500
Gas turbine (g/GJ)	65 - 120	N.A. (not applicable)	N.A.

Regarding liquid refinery fuels this is composed by a mixture of:

- o Atmospheric Residue;
- Vacuum Residue;
- o Thermal and Catalytic Cracking Residue;
- o Hydroconversion Residue.

The liquid refinery fuels have different sulfur content as a function of crude oil source (table 6).

Crude oil source	Sulfur content, mass %				
Ci ude on source	Atmospheric Residue Vacuum Residue Cracked Residue				
North Sea	0,6-1,1	1,1 – 1,8	3,5 - 6,5		
Middle East	2,3-4,4	3,6-6,1	6,5 – 11,4		

Table 6. Sulfur content in liquid refinery components

The BAT analysis regarding SO_2 emissions control is presented in table 7 and of NO_x emissions control is presented in table 8. This case study is made for a power unit of 500 MW where 3 M

tons/year of gaseous and liquid fuel is burned. The volume of flue gas is $1680 \cdot 10^6 \text{ Nm}^3/\text{yr}$ and initial pollutant concentration of SO₂ is a function of sulfur content of fuels. For NO_x, the initial concentration is variable and the final pollutant concentration is a function of the cleaning process.

Table 7. Analysis of BAT regarding SO2 emission controlCapacity of the process = 3 Mt/yr (120000 t/yr liquid fuels + 180000 t/yr gaseous fuel)Volume of flue gas = 1680 $\cdot 10^6$ Nm³/yrInitial pollutant concentration: 5000 mg SO_x/Nm³ (for liquid fuels with 3% S);Total SO2 quantity: 8400 t/yr

Name of technology	Flue gas desulfuri- zation	Regenerative catalytic flue gas desulfurization	Refining SO ₂ management operation	Liquid fuel desulfuri-zation	Gasification of liquid fuel
Efficiency	90 % (500 mg/Nm ³)	Up to 95-98 % (100 – 250 mg/Nm ³)	Global	Up to 85 % (down to 750 mg/Nm ³)	Replacement of most liquid fuels by gaseous fuel with 0,01 S%
Investment cost	30 – 50 Million Euro	50 – 80 Million Euro	0	100 – 300 Million Euro	200 – 400 Million Euro
Operating cost	5 Million Euro/yr	Variable	Variable	20 – 50 Million Euro/yr	20 – 40 Million Euro/yr
Other impacts	-Increased energy consumption; -By product; -Raw material handing.	-Increased energy consumption; -Possible bottlenecking of H ₂ S handing facilities.	-	-Increased energy consumption; -Catalyst disposal; -Marketing low sulfur fuel oil.	-Increased energy consumption; -Possible difficulties in burning low calorific value gas.

Table 8. Analysis of BAT regarding NO_x emission controlCapacity of the process = 3 Mt/yr (120000 t/yr liquid fuels + 180000 t/yr gaseous fuel)Volume of flue gas = 1680 $\cdot 10^6 Nm^3$ /yrInitial pollutant concentration: variable

Name of technology	Low NO _x burners	Thermal De-NO _x	Selective catalytic reduction
Efficiency	10 - 50 % (150 - 300 mg/Nm ³)	60 - 80 % (200 mg/Nm ³)	85 % (50 mg/Nm ³)
Investment cost	0,5 – 1,0 Million Euro	3 – 5 Million Euro	15 – 20 Million Euro
Operating cost	N.A.	0,2 – 1 Million Euro/yr	2 Million Euro/yr
Other impacts	-Increased particulate emissions with liquid fuels.	-Energy to produce NH ₃ ; - Risk of NH ₃ emissions.	 Energy to produce NH₃; Risk of NH₃ emissions; Catalyst disposal.

The technology applied for the reduction of NO_x emission control must be chosen by balancing of all the parameters: efficiency, investment cost, operating cost and other impacts.

Conclusions

In the last time there are many environmental actions in order to reduce atmospheric pollution. The legislative forums discuss about new limits for pollutants emissions with very restrictive specifications for CO, SO_x and NO_x .

These new rules ask greater investments and greater operating costs in order to meet new specifications for atmospheric emissions. In this case, BAT could be a very useful tool when the upgrading of the unit is recommended or when new limitations are imposed to pollutants emissions.

Using Best Available Technology analysis it is possible to obtain a correct image about the advantages and disadvantages of each technology regarding oil refinery pollutant emissions.

References

- 1. www.ippc.org
- 2. S t ă n i c ă E z e a n u, D., Cea mai bună tehnologie disponibilă pentru a reduce emisiile poluantedin instalația de cracare catalitică în strat fluidizat, *Buletinul Universității Petrol-Gaze din Ploiești, Seria Tehnică*, vol. LVIII, nr. 3, 2006, p. 13-18
- 3. Decrocq, M., Revue de l'IFP, vol. 52, nr. 5, 1999
- 4. Beardemphl, S., Meyer, S.F., Wibbbermeyer, L.K., *Hydroc. Proc.*, 9, 2005, 99-106.

Cea mai bună tehnologie disponibilă pentru a reduce emisiile poluante din industria de rafinare a țițeiului

Rezumat

Această lucrare prezintă o analiză tipică referitoare la reducerea emisiilor de poluanți din aer în cazul industriei de rafinare a țițeiului folosind procedurile celei mai bune tehnologii posibile. S-au studiat po-luanții eliminați în atmosferă ca : SO_2 , NO_x și compuși organici volatili (COV), iar reducerea lor a fost corelată cu costurile de investiție și de operare, cu eficiența procesului de curățare și cu impactul asupra instalației.