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Abstract 

 
This paper presents a novel mathematical model which can be used to get an uniform flux and pressure 
distribution along a horizontal well using Interval Control Valves. 
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Introduction 
 
A very important element in horizontal well production evaluations is played by the flux and 
pressure distribution along the horizontal section which is highly influenced by the friction 
pressure loss due to the fluid flow between the heel and the toe.  

The fluid flow and the pressure distribution along the horizontal section can be controlled by 
using Interval Control Valves (ICV) as illustrated in figure 1. In this case the horizontal section 
completion includes an extended stinger with intermediate packers dividing the horizontal 
section into few intervals produced separately by ICV devices.  

The complexity of ICV devices is depending on purpose and price, the highest price being about 
half million US$ for a complex ICV measuring pressure and temperature with a continuous flow 
rate control. Cheaper devices are on/off valves or presenting few discrete steps for flow rate 
control. All of these ICV types can be electrically or hydraulically controlled. 
 
 

 
 

Fig.  1. Horizontal well section completed with four Interval Control Valves (ICV). 
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Flow Rate Equations 
 
The flow of an incompressible and homogeneous fluid through a slightly inclined pipe with a 
constant cross section A is described by the Bernoulli equation, while the friction pressure losses 
can be approximated the Weisbach–Darcy equation as: 
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where p and γh represent the pressure and the potential energy respectively, λ – hydraulic 
resistance coefficient, w – average velocity of the fluid through the pipe, g – gravity 
acceleration, L – pipe length, d – pipe diameter, and γ – fluid specific gravity. The pressure loss 
due to the friction forces may be expressed as well as: 
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Thus, the fundamental flow equation becomes: 
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For an elementary interval xj–1…xj, the above relations can be written as:  
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where  h is the isometric depth. Using the differential form, the system becomes:  
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The second relationship (5) represents the material balance equation, where the rate of fluid 
flowing through the pipe equals the reservoir specific flow. 

For simplicity reasons, we consider A(x) = A = ct., Ai(x) = Ai = ct., λ(x) = λ[Q(x)] and λi(x) = 
λ[Qi(x)], where A(x) and Ai(x) represent the cross section area of the tubing and of the inner 
space existing between the tubing and the casing, respectively. Accordingly, Q(x) and Qi(x) 
represent the fluid flow rates through the tubing and through the inner space existing between 
the tubing and the casing, respectively. 
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Flux, Flow Rate and Pressure Loss into the Inner Space Evaluation 
 
For the inner space the above system of equations can be written as: 
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The first equation describes the fluid flux produced by the reservoir, where ip is the specific 
productivity index, pc – reservoir pressure, and pd(x) – well-bore pressure corresponding to the x 
cross section within the analyzed horizontal interval. Using an alternate form, it can be written: 
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It has to be noted that the hydraulic resistance factor λ = λ(Q) should be evaluated as function of 
Reynolds number: 
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where μ, ν are the cinematic, respectively the dynamic fluid viscosity. Or: 
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Considering the laminar flow through the pipe, it results: 
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By changing the variables: ( ) ( )[ ]xQYxQ ii =& , where Qi(x) is independent variable: 
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the equation (16) becomes: 
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Separating variables, results: 
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Integrating equation (19) for a subinterval k, x becomes x–xp(k–1) and then: 
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where xp (k–1) represents the distance measured from the beginning of the interval up to the first 
packer allocated to the interval. Considering that ( )xh&  = mk, where mk represents the pipe slope 
for the subinterval xp k – xp(k–1), after integration it results: 
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wherefrom: 
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Two first order linear differential equations are resulting: 
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For a given interval, the fluid flow rate through the inner space is then described by the 
following equations: 
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For the same interval, the distribution of the fluid flux exchanged between the well bore and the 
reservoir is given by: 
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Using equation (6), the well bore pressure is given by 
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Tubing Well Bore Pressure Distribution 
 
Considering n production intervals and using equation (4) it results: 

    ( ) ( ) ,1
4 0

1
250 hhQlQ

Ag
pp n

n

k
kkkn −γ+λ

πγ
=− ∑

=

 (31) 

where pn is the tubing pressure corresponding to the nth ICV, Qk – flow rate of the kth ICV, and lk 
– distance from the beginning of the kth interval to the kth ICV. 
 
 
Conclusions 
 
The design of a horizontal well using ICV devices is made possible using the equations derived 
in this paper. The elaborated mathematical model is very useful for the optimization of the 
process in order to get uniform flux and pressure distributions along the horizontal well. 
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Optimizarea distribuţiei de flux şi presiune într-o sondă orizontală 
folosind valve de control al intervalului 

 
Rezumat 
 
În lucrare se prezintă un nou model matematic deosebit de util pentru proiectarea amplasării valvelor de 
control al intervalului (ICV-uri) în lungul unei sonde orizontale în scopul obţinerii unei distribuţii 
uniforme a fluxului şi a presiunii pe toată lungimea drenei. 
 


