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ABSTRACT 

Air quality is an important environmental component that has a significant influence on 

public health and well-being. Poor air quality can cause a variety of health problems, 

including respiratory and cardiovascular disorders. Therefore, there is a growing demand 

for air quality prediction tools to enable consumers and authorities to take the best 

decisions and to implement the necessary actions to reduce air pollution. The present 

paper describes an innovative application that uses machine learning techniques to supply 

to the users real-time air quality predictions made on past data from their unique location. 

The Scikit-learn Python package was used to implement five machine learning 

algorithms, including K-Nearest Neighbors, Random Forest, Gradient Boosting, Support 

Vector Regression (SVR) and AdaBoost. To achieve robust model performance, 

compatibility with cross-validation approaches was evaluated. The obtained results 

indicate that these machine learning techniques are successful at forecasting air quality. 

The AdaBoost method emerged as the best accurate predictor after extensive 

investigation, closely followed by Gradient Boosting, SVR, Random Forest, and K-

Nearest Neighbors. Furthermore, the investigation also focused on the adapted handling 

of inaccurate data and providing graphical visualizations to highlight the algorithm's 

efficacy.  

Keywords: Python, K-Nearest Neighbors, SVR, AdaBoost, Random Forest, Gradient 

Boosting, Machine Learning, air quality, cross-validation 

 

INTRODUCTION 

Air quality is undeniably a critical environmental component which has a strong impact 

on public health and overall well-being. The air quality significantly impacts people 

everyday life, since poor air quality can lead to a multitude of health problems, ranging 

from respiratory ailments to cardiovascular disorders. With growing concerns regarding 

air pollution, there has been an unprecedented surge in demand for reliable and real-time 

tools for real time information of the population regarding the quality of the air they 

breathe. Such information is vital not only for empowering citizens to make informed 

decisions about their outdoor activities but also for aiding authorities in developing and 

implementing effective strategies [12, 15, 17, 19]. 



Romanian Journal of Petroleum & Gas Technology 

Vol. V (LXXVI) • No. 1/2024 

 

 

 

6 

In recent years, the machine learning (ML) methods has experienced ground-breaking 

advancements, opening exciting new avenues for forecasting and monitoring air quality. 

This convergence of technology and environmental science has opened a new era where 

ML approaches can harness vast volumes of data from diverse sources, including an 

extensive network of sensors and high-resolution satellite imagery. These innovations are 

essential in developing highly accurate air quality predictions that transcend traditional 

models, providing valuable insights into air quality dynamics within specific regions [16]. 

The paper presents an innovative application that harnesses the power of ML in order to 

supply to the user’s real-time air quality predictions. By leveraging historical data, 

combined with advanced algorithms, this application brings a high level of precision to 

air quality monitoring. It not only empowers individuals to make informed decision about 

their daily activities but also equips local authorities with the tools they need to 

proactively address air quality concerns and protect the health and well-being of their 

communities.  

The quality of air depends on the composition and cleanliness of the atmosphere, a critical 

aspect of environmental health and sustainability. According [12, 17, 18], the key 

parameters routinely monitored to assess air quality are: particulate matter (PM2.5 and 

PM10) (these measurements track the concentration of fine particles suspended in the air, 

which can have adverse effects on respiratory health), ground-level Ozone (O3) (the 

monitoring of ozone levels is crucial, as high concentrations near the Earth's surface can 

cause respiratory problems and harm vegetation), nitrogen dioxide (NO2) and sulphur 
dioxide (SO2) (these gases are emitted from combustion processes and industrial activities 

and can lead to respiratory and environmental problems when present in high amounts), 

carbon monoxide (CO) (the monitoring of CO levels is essential as this colourless, 

odourless gas can be lethal in high concentrations), volatile organic compounds (VOCs) 

(VOCs are organic chemicals that can vaporize into the air and contribute to air pollution; 

they play a role in the formation of ground-level ozone and smog) and carbon dioxide 

(CO2) (while not a pollutant itself, monitoring CO2 levels is vital to assess greenhouse 

gas emissions and their contribution to climate change). Air quality standards and 

regulations vary by region and country, but they typically adhere to guidelines established 

by organizations such as the World Health Organization (WHO) and the Environmental 

Protection Agency (EPA) in the United States [20, 22]. These standards set the 

permissible concentration levels for various air pollutants to protect human health and the 

environment. Maintaining and improving air quality is crucial to ensure the well-being of 

both human populations and ecosystems, making it a paramount concern in 

environmental and public health policies worldwide. In this context, companies like 

IQAir and Airly play an important roles in enhancing awareness and enabling individuals 

to actively engage in safeguarding air quality. They achieve this through their innovative 

software interfaces. IQAir (Figure 1), for instance, provides a user-friendly mobile 

application that empowers users to monitor, manage and optimize indoor air quality. Its 

real-time notifications and intuitive controls enable individuals to take proactive steps 

towards healthier living environments [16]. On the other hand, Airly (Figure 2) offers a 

web and mobile application interface that displays real-time air quality data on a map. 

This dynamic platform equips users with the tools to access detailed information on 

pollutant levels, historical trends and alerts, thereby fostering informed decisions and 

community engagement to address outdoor air quality concerns [13]. The World Air 

Quality Index (WAQI) and AirNow are two important applications that help to monitor 
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and improve air quality. A well-known program called WAQI (World Air Quality Index) 

gathers data on air quality from monitoring stations across the world and offers real-time 

information on pollutants through a user-friendly mobile app and website (Figure 3) [14, 

23]. The Environmental Protection Agency (EPA) of the United States provides AirNow 

(Figure 4), which allows users to plan their daily activities and make air quality-related 

decisions, with real-time data on the country's air quality, including the Air Quality Index 

(AQI), historical data, forecasts, and pollution maps [14, 21, 22]. 

 

  

Figure 1. IQAir user Interface [16]             Figure 2. Airly user interface [13] 

 

  
Figure 3. WAQI user Interface [23] Figure 4. AirNowuser Interface [14] 

 

THE AIR QUALITY PREDICTION APPLICATION DEVELOPMENT 

The developed application AirPredict is a cutting-edge solution designed to offer users 

real-time information about air quality in their surroundings. The application employs 

ML algorithms to analyse data from a range of sources, including air quality monitoring 

stations, weather data and existing databases. AirPredict uses a series of pollutants that 

have been registered in the past months or years, to determine and predict the AQI (Air 

Quality Index) for the following day. The pollutants that are measured are SO2, NO2, O3, 

CO, C6H6, PM10, PM2.5, Pb, As, Cd, Ni, Benzo(a)pyrene (Table 1). Using these 

pollutants, AirPredict can determine the AQI factor on which the following day prediction 

is based on [12, 16, 17, 19]. 

Table 1. Pollutant’s Sub-Index formula [1] 

Pollutant Sub-Index Formula 

SO2 (Sulfur Dioxide) SO2 Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

NO2 (Nitrogen Dioxide) NO2 Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

O3 (Ground-level Ozone) O3 Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

CO (Carbon Monoxide) CO Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

C6H6 (Benzene) C6H6 Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 
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PM10 (Particulate Matter ≤ 10µm) PM10 Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

PM2.5 (Particulate Matter ≤ 2.5µm) PM2.5 Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

Pb (Lead) Pb Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

Arsenic Arsenic Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

Cadmium Cadmium Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

Nickel Nickel Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

Benzo(a)pyrene B(a)p Sub-Index = IHI * (C - ILo) / (IHi - ILo) + 0 

 

In table 1, IHI is the pollutant index, C is the pollutant concentration, ILo is the pollutant 

lower concentration breakpoint while IHi represents the upper concentration breakpoint 

for the air pollutant. The AQI is calculated by taking the highest individual pollutant index 

and rounding it to the nearest integer.  

The developed application AirPredict has carried out an in-depth analysis using a dataset 

extracted from Kaggle, comprising fifteen thousand data points for one point five years 

[17]. After meticulously cleaning and filtering the data to remove irregularities, a refined 

dataset of twelve thousands entries remained as it can be observed in table 2.  

Table 2. The AirPredict dataset (selection) [17] 

Date 01-01-2022 20-01-2022 25-01-2022 28-02-2022 

Location Bucharest Brasov Galati Ploiesti 

AQI (Air Quality Index) 52.52 44.94 56.41 40.25 

SO2 (Sulfur Dioxide) 196.76 313.8 196.42 240.65 

NO2 (Nitrogen Dioxide) 87.03 117.75 68.9 176.88 

O3 (Ozone) 69.82 71.24 6.07 96.8 

CO (Carbon Monoxide) 0.73 3.7 5.56 2.61 

C6H6 (Benzene) 3.58 2.31 3.84 0.78 

PM10 (Particulate Matter 10) 0.99 20.08 38.61 27.66 

PM2.5 (Particulate Matter 2.5) 6.51 10.11 13.65 3.3 

Pb (Lead) 0.22 0.29 0.33 0.48 

Arsen 1.85 2.59 5.05 4.1 

Cadmiu 4.9 2.82 4.67 1.6 

Nichel 5.56 3.3 4.47 16.79 

Benzo(a)pyrene 0.41 0.98 0.37 0.97 

 

A substantial dataset is crucial for precise predictions, especially when forecasting over 

an extended period. However, it's important to note that the fifteen thousand data points 

are spread across thirty cities from Romania, resulting in an average of about four hundred 

data points per city. This city-specific distribution plays an important role in the 

prediction accuracy. It is known the fact that ML algorithms excel when provided with 

huge amount of data (in this case data from specific region). This approach not only offers 

a comprehensive view of air quality within each city but also enhances the algorithms' 

ability to identify the local nuances and trends. Consequently, predictions of the Air 

Quality Index (AQI) achieve higher accuracy when grounded in a wealth of data extracted 
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from specific areas [16]. The materials and methods used to create AirPredict application 

uses ML techniques to provide real-time air quality predictions based on past data from a 

given location. The application uses the capabilities of five different ML algorithms to 

build an accurate air quality prediction model, such as: 

 K-Nearest Neighbors (K-NN): is a classification technique based on the 

principle of data similarity, with predictions made by considering the majority 

class of the k-nearest neighbors; it excels in capturing localized patterns in air 

quality data [5, 7, 10, 11]; the developed source code for K-NN algorithm is 

presented in Figure 5; 

 Random Forest: is an ensemble learning method that excels with complex 

datasets; it combines multiple decision trees to provide reliable predictions while 

mitigating overfitting, adept at capturing intricate relationships in air quality data 

[5, 8, 10]; the developed source code for Random Forest is presented in Figure 6; 

 Gradient Boosting: it iteratively improves predictive models by correcting errors 

of previous iterations; it refines air quality predictions by capturing both global 

and local data patterns, valuable for long-term forecasting [5, 7, 6, 11]; the 

developed source code for Gradient Boosting algorithm is presented in Figure 7; 

 Support Vector Regression (SVR): is a variation of Support Vector Machines 

(SVM), creates precise regression models by finding an optimal hyperplane while 

minimizing the difference between predicted and actual values [5, 10, 11]; the 

developed source code for SVR is presented in Figure 8; 

 AdaBoost (Adaptive Boosting): it enhances prediction accuracy by combining 

multiple weak learners and assigning higher weight to misclassified data points 

[5, 10, 11]; the developed source code for AdaBoost algorithm (Figure 10) is 

presented in Figure 9. 

 

  

Figure 5. K-NN source code Figure 6. Random Forest source code 
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Figure 7. Gradient Boosting source code Figure 8. SVR source code 

  

 

 

 

Figure 9. AdaBoost source code 

 
 Figure 10. AdaBoost algorithm code 
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For the algorithms development and training was used Python's Scikit-Learn module due 

to its extensive toolkit, simplicity, and rich documentation [5, 6, 9]. Also, for assessing 

the studied ML algorithms (K-NN, Gradient boosting, Random Forest, SVR and 

AdaBoost’s) durability and generalization was used cross-validation method presented in 

Figure 11. It involves iteratively training and testing of the models on different dataset 

subsets to evaluate predictive performance across diverse data circumstances [2, 3, 4, 5, 

10, 11]. 

 

 

Figure 11. Cross-Validation method for ML algorithms 

 

In Figure 12, is presented the developed application AirPredict interface which provides 

to the user the following options: 

 The selection of the desired ML algorithm (Random Forest, Ada Boost, Gradient 

Boosting, K-NN or SVR) to generate air quality predictions; the algorithms utilize 

historical data to develop predictive models (Table 2);  

 Graph option for visual representations (graphs option) of different aspects of the 

prediction process; additional graphs, such as those illustrating R-squared (R2) or 

Mean Absolute Error (MAE), may be included to assess model accuracy; 

 Individual graph option used to obtain specific graphs generated for each used 

ML algorithm; these graphs display various performance metrics, errors or other 

relevant information; 

 The Compare option initiates the execution of all studied ML algorithms, 

followed by a rigorous evaluation process utilizing the cross-validation 

methodology. The goal is to identify the optimal ML algorithm from the analyzed 

ones and to provide a nuanced assessment of their relative performances in terms 

of prediction accuracy and generalization capabilities. 

 

 

Figure 12. AirPredict user interface 
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So, cross-validation method was used to evaluate (using the parameters presented in Table 

3) how well the K-NN, Gradient boosting, Random forest, SVR, and AdaBoost generalize 

the unknown data. It's a crucial step to ensure that the developed models are robust and 

reliable [2]. 

Table 3. Cross-validation parameters [2] 

Parameter Description 

Cross-validation A resampling technique used to assess model performance by partitioning 

the dataset into training and validation subsets. 

K-fold cross-validation Divides the dataset into k subsets (folds) for training and validation; 

iteratively, one-fold is used for validation while the remaining k-1 folds are 

used for training; this process repeats 'K' times, and performance metrics are 

averaged. 

Stratified k-fold cross-

validation 

Ensures that each fold has a similar distribution of target classes as the 

original dataset, suitable for imbalanced datasets. 

Leave-one-out cross-

validation (LOOCV) 

A special case of k-fold cross-validation where k equals the number of data 

points, resulting in n iterations; each data point serves as the validation set 

while the rest are used for training. 

Shuffle-split cross-

validation 

Randomly shuffles the data and splits it into training and validation sets for 

n_splits iterations; it allows control over the number of splits and validation 

set size. 

Performance metrics Evaluation metrics such as Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), R-squared (R2), and others are used to assess algorithm 

performance. 

Best algorithm selection The algorithm with the lowest error metrics (e.g., MAE, RMSE) or highest 

goodness-of-fit (e.g., R2) scores across cross-validation iterations is 

typically considered the best performer. 

Generalization 

assessment 

Cross-validation helps determine how well a model generalizes to unknown 

data; lower variability in performance across folds suggests better 

generalization. 

Hyper parameter tuning Cross-validation is used to fine-tune hyper parameters of machine learning 

algorithms by assessing their impact on model performance across different 

folds. 

Overfitting detection High variance in performance across folds may indicate overfitting, where 

the model fits the training data too closely and fails to generalize; cross-

validation helps detect this issue. 

Bias-variance trade-off Cross-validation aids in understanding the trade-off between model bias 

(under fitting) and variance (overfitting) by examining how different 

algorithms strike this balance. 

 

Based on the results obtained through cross-validation the application determines the 

best-performing ML algorithm. A rational explanation for the choice made is provided 

using the following evaluation metrics (Table 4): 

 R2 (R-squared) is a statistical measure that quantifies the proportion of the 

variance in the dependent variable (e.g., AQI) that is explained by the independent 

variables (e.g., predictors used in a model); it ranges from 0 to 1, where 0 indicates 

that the model explains none of the variance and 1 indicates a perfect fit; higher 

R2 values suggest that the model's predictions closely match the actual values, 

indicating a better fit [2]; 
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 MAE (Mean Absolute Error) calculates the average absolute difference between 

predicted and actual values for a set of data points; it provides a measure of the 

model's accuracy in predicting the actual AQI values; lower MAE values indicate 

that the model's predictions are closer to the actual values, reflecting higher 

accuracy [2]; 

 MAPE (Mean Absolute Percentage Error) measures the average absolute 

percentage difference between predicted and actual values; it quantifies the 

relative accuracy of the model's predictions, making it suitable for assessing 

performance when the scale of the data varies; lower MAPE values indicate that 

the model's percentage errors are smaller, implying better relative accuracy [2]; 

 MedAE (Median Absolute Error) computes the median (middle value) of the 

absolute differences between predicted and actual values; it offers a robust 

measure of central tendency for the prediction errors and is less sensitive to 

outliers than MAE; MedAE is particularly useful when the dataset contains 

extreme values or outliers [2]. 

Table 4. Evaluation metrics mathematical formulas [4] 

Metric Formula 

R2 Score  
1 −

𝑆𝑢𝑚𝑜𝑓𝑆𝑞𝑢𝑎𝑟𝑒𝑠𝑜𝑓𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑚𝑜𝑓𝑆𝑞𝑢𝑎𝑟𝑒𝑠
 

MAE (Mean Absolute Error) 1

𝑛
∑|𝑌𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

MAPE (Mean Absolute Percentage 

Error) 
1

𝑛
∑|

𝑌𝑖 − 𝑦𝑖
𝑦𝑖

|

𝑛

𝑖=1

∗ 100% 

Median Absolute Error (MedAE) (|𝑌𝑖 − 𝑦𝑖|) 

 

In table 4, n represents the number of data points, Yi represents the actual AQI value for 

data point I, while yi represents the predicted AQI value for data point i. 

 

RESULTS AND DISCUSSIONS 

To develop a reliable air quality prediction system, the application undertook a thorough 

review of historical data from thirty cities in Romania, a selection of data being presented 

in the Table 2 [17]. The primary goal was to evaluate the efficacy of five different ML 

algorithms in terms of generating real-time air quality predictions, efficiency measured 

following the next criteria [2, 10, 11]:  

 Algorithms performance: the research provided useful insights into the 

effectiveness of used ML techniques; it is important to highlight that all 

algorithms performed well in processing the prior year's datasets, demonstrating 

their utility in air quality prediction [4, 5];   

 Managing aberrant data: one major accomplishment was the algorithm’s ability 

to successfully handle erroneous data; in environmental datasets, outliers and 

unexpected data points are presented and dealing with them is critical for good 

forecasts [4, 5, 7, 11]; 
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 Method of cross-validation: the application uses the cross-validation approach 

to guarantee the resilience and generalization of the K-NN, Gradient boosting, 

Random Forest, SVR and AdaBoost models; was tested how well the models 

would perform on unknown data using this method; the cross-validation findings, 

together with individual performance measures, offered useful insights into the 

ranking of ML algorithms [5, 7]. 

Table 5 presents a comprehensive overview of the evaluation metrics used to assess the 

performance of the analysed ML algorithms. 

Table 5. Evaluation metrics for the analyzed ML algorithms 

Algorithm Score R2 MAE MAPE MedAE 

SVR 0.00262141 

95429361 

6.64047789 

7958316 

0.14030579 

457355047 

5.76661036 

767187 

Random Forests 0.03187172 

49386939 

6.72374243 

6412316 

0.14214603 

048160224 

5.86944999 

9999979 

AdaBoost 0.00161907 

78546933 

6.63617991 

32395385 

0.14014311 

785641947 

5.72643407 

8002875 

Gradient Boosting 0.01153712 

50445714 

6.67209757 

12301085 

0.14107339 

578521325 

5.73340484 

9539017 

K-NN 0.22449367 

38071974 

7.37010174 

0294512 

0.15482715 

428068558 

6.46500000 

0000003 

 

From table 5, the following information can be obtained: 

 The top-performing algorithm was AdaBoost (with the learning curve graph from 

Figure 13) based on superior evaluation metrics; its adaptability and concentration 

on misclassified data points contributed to its high accuracy in assessing air 

quality levels; AdaBoost is better than the other algorithms based on the metrics 

shown in table 5 because it has a higher R2 score, a lower MAE and MAPE, and 

a lower MedAE; this means that AdaBoost is better at predicting the target 

variable accurately and with low error; 

 In terms of performance, Gradient Boosting (with the learning curve graph from 

Figure 14) closely followed AdaBoost; this ensemble learning technique 

performed well in terms of improving predictions and minimizing mistakes, 

making it a good contender for estimating air quality; 

 SVR (with the learning curve graph from Figure 15) performed well, producing 

solid regression models for air quality prediction; its capacity to discover the best-

fitting hyperplane while reducing prediction errors was demonstrated to be useful; 

 Random Forest (with the learning curve graph from Figure 16) gained a decent 

position in the ranking thanks to its stability and ability to handle complicated 

datasets; it contributed to reliable air quality assessments; however, it lagged 

somewhat behind the best algorithms; 

 While K-NN (with the learning curve graph from Figure 17) performed well, it 

was near the bottom of achieved ranking; while it was effective in some cases, its 

emphasis on proximity-based categorization appears to be less suited to the 

complexities of air quality prediction. 
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Figure 13. AdaBoost learning curve Figure 14. Gradient Boosting learning curve 

  
Figure 15. SVR learning curve Figure 16. Random Forest learning curve 

 
Figure 17. K-NN learning curve 

 

The obtained learning curve presented above, illustrates that initially, the model quickly 

learns from training data, resulting in a lower training error than the validation error. 

However, over time, the model starts overfitting the training data, causing the training 

error to decrease while the validation error increases. The initial drop in the validation 

error from 6.645 suggests under fitting, indicating that the model initially struggles to 

capture the training data's nuances. As training continues, the model improves its fit, 

leading to a lower validation error. However, around two thousand data points, the 

validation error begins to rise again, signaling overfitting. In summary, the learning curve 

indicates overfitting, where the model's excessive focus on the training data impairs its 

ability to generalize. The widening gap between training and validation errors reflects this 

issue. Strategies like regularization and early stopping can help mitigate overfitting. With 

a substantial dataset of fifteen thousand measurements, AdaBoost can leverage this rich 

source of information. The abundance of data allows the algorithm to learn robust patterns 

and make accurate predictions. It's less likely to fall into the trap of overfitting, as there 

is enough data to discern genuine patterns from noise. AdaBoost's adaptability is high if 

the dataset contains complex relationships and interactions between air quality 

parameters. The algorithm can capture intricate patterns effectively, making it well-suited 

for challenging datasets. AdaBoost is known for handling imbalanced datasets well by 
assigning higher weights to misclassified samples, which helps in learning minority 

classes. On the other hand, irrelevant or noisy features can reduce performance and 
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potentially lead to overfitting [2, 3, 10, 11, 12]. AdaBoost is generally less prone to 

overfitting compared to some other complex models, trying to fit the anomalies if the 

dataset is noisy or contains outliers. This can lead to overfitting, where the model learns 

the training data too closely and struggles to generalize. To reduce overfitting in 

AdaBoost, regularization techniques can be applied. Regularization adds a penalty to the 

loss function, discouraging the model from fitting noise. Common techniques include 

adjusting the learning rate or limiting the depth or complexity of the base learners. 

Utilizing cross-validation is essential to ensure AdaBoost's generalization capabilities. It 

helps identify when overfitting occurs and allows the fine-tuning of the regularization 

parameters [2, 3, 10, 11, 12]. AdaBoost is known for its efficiency during the training 

phase. It builds a strong ensemble model by iteratively training weak learners, typically 

decision trees, on weighted subsets of the data. Since these learners are relatively simple, 

the training process is often fast and can scale well even to large datasets. Once trained, 

AdaBoost's predictions are generally quite fast. The efficiency is given by the fact that 

the model consists of a weighted combination of weak learners, and the evaluation of 

these learners for prediction is typically computationally inexpensive. AdaBoost's models 

tend to be lightweight compared to some other complex models like deep neural 

networks. The ensemble consists of a collection of simple base learners with associated 

weights. This means that storing and deploying the model is efficient in terms of memory 

usage and inference speed. Another advantage of AdaBoost is that the training of weak 

learners in each iteration can be parallelized. This means that, depending on the 
computational resources available, AdaBoost can take advantage of parallel processing 

to speed up training even further. AdaBoost's computational efficiency makes it suitable 

for a wide range of applications, from small to large datasets. It can handle datasets with 

thousands or even millions of data points, making it versatile for various ML techniques 

[2, 3, 10, 11, 12]. In table 6 is presented the pseudocode for AdaBoost ML algorithm, 

while the algorithm implementation in Python is presented in Figure 9 and Figure 10.  

Table 6. AdaBoost algorithm (pseudocode) [1]  

(1) AdaBoost algorithm: 

(2) start 

(3) initialize training data D and the number of iterations T; 

(4) initialize weights for data points: w[i] = 1/N, where N is the number of data points 

(5) for t <- 1 to T do; 

(6)     train a weak learner, such as a decision stump, on the weighted data D with  weights w; 

(7)     calculate the weighted error rate epsilon_t of the weak learner on D; 

(8)     calculate the importance of the weak learner: alpha_t = 0.5 * ln((1 - epsilon_t) 

/epsilon_t); 

(9)     update the weights for data points; 

(10)    for i <- 1 to N do 

(11)        if the weak learner misclassifies data point i then 

(12)            w[i] <- w[i] * e^(alpha_t); 

(13)        else 

(14)            w[i] <- w[i] * e^(-alpha_t); 

(15)        end if; 

(16)    end for; 
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(17)    normalize the weights so that they sum to 1: w <- w / sum(w); 

(18) end for; 

(19) combine the weak learners into a strong classifier using their weighted votes; 

(20) end. 

 

The research of the performance of machine learning algorithms indicated that AdaBoost 

and Gradient Boosting are the most suitable algorithms for air quality prediction, closely 

followed by SVR and Random Forest. While K-Nearest Neighbors performed rather well, 

it was the least successful of the algorithms tested. These findings are useful in 

constructing a new air quality prediction tool that uses ML to give real-time air quality 

predictions. 

 

CONCLUSIONS 

In an era of growing environmental concerns, the necessity for accurate, real-time air 

quality data has become critical. Poor air quality has a direct and considerable influence 

on human health and well-being, making reliable data available to individuals and 

authorities for informed decision-making processes [14, 21, 24]. The paper demonstrates 

the effectiveness of ML algorithms in forecasting and monitoring air quality. Valuable 

insights were gathered by a thorough examination of five unique algorithms, respectively 

K-NN, Random Forest, Gradient Boosting, SVR and AdaBoost combined with rigorous 

cross-validation. The results show that, while all the algorithms performed well, 

AdaBoost is the best algorithm for air quality prediction, closely followed by Gradient 

Boosting. The SVR and Random Forest methods performed well, however K-NN had 

much lower predictive power for air quality prediction. These findings highlight the 

significance of algorithm selection in making accurate air quality predictions. 

Furthermore, the application's systematic workflow which includes user interaction, data 

retrieval from a large database, ML model execution, results visualization, and 

transparent communication of findings via the user interface, increases its value as a tool 

for both individuals and authorities. The author’s main contributions are: 

 The application code, architecture design development and fine- tuning; 

 The implementation of five ML algorithms using the Scikit-learn library from 

Python and the integration of ML models into the application's framework; 

 The identifying of the most suitable ML algorithm for air quality prediction; 

 Extensive data analyses and the handling of aberrant data. 

The convergence of ML and environmental monitoring offers not just improved air 

quality forecasts, but also a better knowledge of the variables driving air quality. The 

developed application exemplifies the ability of the technology in solving major 

environmental issues, allowing individuals and communities to make the best decisions 

for a cleaner and safer future. 
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