
BULETINUL

Universităţii Petrol – Gaze din Ploieşti
Vol. LXI

No. 3/2009
1 - 12 Seria Tehnică

Annotated Logic Program EVALPSN

Based Process Order Control

Kazumi Nakamatsu

University of Hyogo, Himeji 670-0092, Japan

e-mail: nakamatu@shse.u-hyogo.ac.jp

Abstract

We have already proposed a paraconsistent annotated logic program called EVALPSN (Extended Vector

Annotated Logic Program with Strong Negation) and applied it to various control based on safety verifi-

cation. In this paper, a new EVALPSN called bf (before-after)-EVALPSN that can deal with before-after

relation between two processes is introduced, and its application to real-time process order control based

on safety verification is presented with simple examples. Moreover, some useful features of bf-EVALPSN

for real-time control are introduced.

 Key words: annotated logic program, process order control, safety verification, EVALPSN, bf-EVALSN.

Introduction

The safety verification for process order is an important issue in various kinds of process

control. For example, two different kinds of liquid such as nitric acid and caustic soda are used

for cleaning pipelines in a brewery plant. Usually there must be a water process between those

liquid processes in order to avoid dangerous explosion caused by mixing. Such a process order

must be verified to avoid dangerous accidents. In this paper, we introduce a novel intelligent

tool based on a paraconsistent annotated logic program for verifying the safety for process order

control in real-time.

We have already developed a paraconsistent annotated logic program called EVALPSN

(Extended Vector Annotated Logic Program with Strong Negation) [4], and also applied it to

various kinds of intelligent control such as pipeline valve control [6]. Moreover, a new

EVALPSN called bf(before-after)-EVALPSN has been developed for dealing with before-after

relation between two time intervals(processes) dynamically [8]. In bf-EVALP- SN, before-after

relations between processes are represented in 2-dimensional vector annotations whose first and

second components represent before and after degrees respectively, and vector annotations are

determined in real-time according to start/finish information of processes. We show how the bf-

EVALPSN safety verification based real-time process order control is carried out with simple

examples.

Although the bf-EVALPSN real-time process order control can be performed by simple integer

computation and it can contribute to reduce the computation cost of the real-time control, if all

before-after relations between all processes have to be computed, it would cost much

computation. For example, if there are ten processes, forty five before-after relations have to be

considered. Therefore, we introduce useful unique reasoning in bf-EVALPSN that can be

mailto:nakamatu@shse.u-hyogo.ac.jp

Kazumi Nakamatsu 2

applied for reducing process order control time. We have transitive inference rules to derive the

before-after relation between processes Prl and Pr3 from the bf-relations between processes Prl

and Pr2 and between processes Pr2 and Pr3 in bf-EVALPSN, which are called bf-relation

inference rules (bf-inf rules for short). If we use these rules, forty five before-after relations to

be computed from process start/finish information can be reduced nine before-after relations

between adjoining processes. We introduce how to derive some of bf-inf rules and how to apply

them to the real-time process order control.

This paper is organized as follows: EVALPSN is briefly reviewed in Section 1; bf-EVALPSN

and its implementation for determining before-after relation are introduced in Section 1; it is

shown that how to apply bf-EVALPSN to the real-time process order control with examples in

Section 1; and practicai inference rules in bf-EVALPSN for real-time processing are briefly

introduced in Section 1; last, concluding remarks are provided.

EVALPSN

Generally, a truth value called an annotation is explicitly attached to each literal in annotated

logic program [2]. For example, let p be a literal, an annotation, then :p , is called an

annotated literal. The set of annotations constitutes a complete lattice. An annotation in

EVALPSN has a form of]),,[(ji called an extended vector annotation. The first component

),(ji is called a vector annotation and the set of vector annotations constitutes a complete

lattice,

arenandyxnynxyxnv ,,0,0|),{()(integers} .

The ordering (v) of lattice)(nv is defined as: let),(11 yx ,)(),(22 nyx v ,

),(11 yx v 212122),(yyandxxyx .

For each extended vector annotated literal]),,[(: jip , the integer i denotes the amount of

positive information to support the literal p and the integer j denotes that of negative

information. The second component is an index of fact and deontic notions such as

obligation, and the set of the second annotations constitutes the complete lattice,

},*,*,*,,,,{ 321 d .

The ordering)(d of lattice d is described by the Hasse's diagram in Figure 1. Then, the

complete lattice)(ne of extended vector annotations is defined as the product dv n)(The

order)(e of lattice)(ne is defined as:]),,[(111 jilet and]),,[(222 ji be extended vector

annotations,

]),,[(]),,[(222111 jiji e),(),(2211 jiji v and 21 d .

The intuitive meaning of each member of lattice d is (unknown), (fact), (obligation),

 (non-obligation), 1* (fact and obligation), 2* (obligation and non-obligation), 3* (fact and

non-obligation), and (inconsistency).

There are two kinds of epistemic negation 1 and 2 in EVALPSN, which are defined as

mappings over lattices)(nv and d , respectively.

Annotated Logic Program EVALPSN Based Process Order Control 3

Definition 1 (epistemic negations 1 and 2 in EVALPSN)

]),,[(])),,([(: 1 ijjid

],),,[(])),,([(2 jiji],),,[(])),,([(2 jiji

],),,[(])),,([(2 jiji],),,[(])),,([(2 jiji

],*),,[(])*),,([(312 jiji],*),,[(])*),,([(222 jiji

],*),,[(])*),,([(132 jiji].),,[(])),,([(2 jiji

Fig. 1. Lattice v (2) and Lattice d .

Then, the epistemic negations can be eliminated by the syntactical operations in Definition 1.

There also is ontological (strong) negation (~) in EVALPSN, which is defined by epistemic

negations 1 or 2 , and it works as classical negation [4].

Definition 2 (strong negation) [3] Let F be any formula and be 1 or 2 .

)).()((~ FFFFFF def

Definition 3 (weva-literal) Let p be a literal.]),0,[(: ip and]),,0[(: jp are called weva-

literals, where ,...}2,1{, ji and },,{ .

Definition 4 (EVALPSN) If nLL ,...,0 are weva-literals,

011 ~...~... LLLLL nii

is called an EVALPSN clause. An EVALPSN is a finite set of EVALPSN clauses.

Deontic notions such as obligation and fact are represented by extended vector annotations as

follows: let m be a positive integer;

"fact" is represented by an annotation]),0,[(m ,

"obligation" is done by an annotation]),0,[(m ,

"forbiddance" is done by an annotation]),,0[(m ,

"permission" is done by an annotation]),,0[(m .

Before-after EVALPSN

First of all, we introduce a particular literal),,(tpjpiR whose vector annotation represents the

before-after relation between processes)(Pr pii and)(Pr pjj at time t , which is called a bf-

literal
1
.

1
 Hereafter, the word “before-after” is abbreviated as just “bf” in this paper.

Kazumi Nakamatsu 4

Definition 5 (bf-EVALPSN) An extended vector annotated literal

],[:),,(21 tppR ji

is called a bf-EVALP literal, where 1 is a vector annotation and },,{2 . If an

EVALPSN clause contains a bf-EVALP literal, it is called a bf-EVALPSN clause or just a bf-

EVALP clause if it contains no strong negation. A bf-EVALPSN is a finite set of bf-EVALPSN

clauses.

In order to represent bf-relations between processes, we provide a paraconsistent before-after

interpretation for vector annotations of bf-literals, which are called bf-annotations. Exactly

speaking, bf-relations between processes are classified into meaningful fifteen kinds according

to start/finish times of two processes in bf-EVALPSN though [8], we consider ten kinds of bf-

relations for simplicity.

Fig. 2. Before / After Disjoint Before / After.

Fig. 3. Immediate Before / After Join Before / After.

Suppose that there are two processes, iPr with its start /finish time fs xx / , and jPr with its

start/finish time fs yy / .

Before (be)/After (af) First of all, we define the most basic bf-relations before/after based on

the before-after relation between each start time of two processes, which are represented by bf-

annotations be/af, respectively. If one process has started before/after another one, then the bf-

relations between them are defined as "before(be)/ after(af)", respectively. They are described

in the left process chart in Figure 2 with the condition that iPr has started before jPr .

Disjoint Before (db)/After (da) Bf-relations disjoint before/after between iPr and jPr are

represented by bf-annotations db/da, respectively. The expression "disjoint before/after"

implies that there is a timelag between the earlier process finish time and the later one start time.

They are described in the right process chart in Figure 2 with the condition that iPr has finished

before jPr starts.

Immediate Before (mb)/After (ma) Bf-relations immediate before/after between iPr and

jPr are represented by bf-annotations mb/ma, respectively. The expression "immediate

before/after" implies that there is no timelag between the earlier process finish time and the later

one start time. They are described in the left process chart in Figure 3 with the condition that

iPr has finished immediately before jPr starts.

Annotated Logic Program EVALPSN Based Process Order Control 5

Joint Before (jb)/After (ja) Bf-relations joint before/after between iPr and jPr are represented

by bf-annotations jb/ja, respectively. The expression "joint before/after" implies that the two

processes overlap and the earlier process has finished before the later one finishes. The bf-

relations are described in the right process chart in Figure 3 with the condition that iPr has

started before jPr starts and iPr has finished before jPr finishes.

Included Before (ib)/After (ia) Bf-relations included before/after between iPr and jPr are

represented by bf-annotations ib/ia, respectively. The expression "included before/after" implies

that one process has started/finished before/after another one starts/ finishes, respectively. They

are described in the process chart in Figure 4 with the condition that iPr has started before

jPr starts and finished after jPr finishes.

Fig. 4. Included Before /After.

If we take the before-after measure over the ten bf-annotations as the horizontal order and the

before-after knowledge amount of them as the vertical one, we obtain the complete bi-lattice

bfv)7(of bf-annotations in Figure 5.

Fig. 5. Lattice bfv)7(Process Timing Chart.

Then, there is the following correspondence between bf-annotations and vector annotations:

)3,4(/)4,3(),2,5(/)5,2(),1,6(/)6,1(),0,7(/)7,0(),0,4(/)4,0(iaibjajbmambdadbafbe .

Definition 6 (negation 1 bf-EVALPSN)

Obviously the epistemic negation 1 that maps bf-annotations to themselves is defined as

follows:

,)(,)(,)(,)(,)(,)(111111 mambmbmadadbdbdaafbebeaf

.)(,)(,)(,)(,)(,)(7717711111 iaibibiajajbjbja

Kazumi Nakamatsu 6

Real-time Process Order Control/bf-EVALPSN

In this section, we show how the start/finish time of processes can be treated dynamically in bf-

EVALPSN with a simple example in Figure 5, and introduce a real-time process order control

in bf-EVALPSN with the brewery pipeline processes schedule in Figure 6. The details and basic

ideas of the EVALPSN control based on safety verification has been presented in [5].

Example 1

Let us consider three processes)0(Pr0 pid ,)1(Pr1 pid and)2(Pr2 pid , which are supposed to

be processed according to the process schedule in Figure 5, and three bf-relations represented in

the bf-EVALP clauses:

],),,[(:),3,2(],),,[(:),2,1(],),,[(:),1,0(332211 jitppRjitppRjitppR

which are determined by each process start/finish information at time 70 ,...,tt . At time t0, no

process has started yet. Thus, we have no knowledge in terms of each bf-relation.

]),0,0[(:),3,2(],),0,0[(:),2,1(],),0,0[(:),1,0(000 tppRtppRtppR .

At time t1, only 0Pr has started before 1Pr starts, and),1,0(1tppR has bf-annotation be(0,4).

Because since one of the bf-relations,)4,3()5,2(),6,1(),7,0(ibandjbmbdb , could be the bf-

relation between 1Pr and 2Pr , thus, the greatest lower bound (0,4) of the set { (0,7), (1,6), (2,5),

(3,4) } becomes the bf-annotation of),1,0(1tppR . Other bf-literals have the bottom vector

annotation (0,0).

]),0,0[(:),3,2(],),0,0[(:),2,1(],),4,0[(:),1,0(111 tppRtppRtppR .

At time t2, the second process 1Pr also has started before 0Pr finishes. Then, bf-relations jb(2,5)

or ib(3,4) could be the bf-relation between 0Pr and 1Pr . Thus, the greatest lower bound (2,4) of

the set {(2, 5), (3,4)} has to be the vector annotation of),1,0(2tppR . In addition,

),2,1(2tppR has vector annotation (0,4) as well as),1,0(1tppR since 1Pr has also started before

2Pr starts.),3,2(2tppR has the bottom vector annotation (0,0) since 2Pr has not started yet.

]),0,0[(:),3,2(],),4,0[(:),2,1(],),4,2[(:),1,0(222 tppRtppRtppR .

At time t3, 2Pr has started before both 0Pr and 1Pr finish. Then,),1,0(3tppR and

),2,1(3tppR have the same vector annotation (2,4) as well as),1,0(2tppR . Moreover,

),2,1(3tppR has vector annotation (0,4) as well as)1,1,0(tppR .

]),4,0[(:),3,2(],),4,2[(:),2,1(],),4,2[(:),1,0(333 tppRtppRtppR .

At time t4, 2Pr has finished before both 0Pr and 1Pr finish. Then,),1,0(4tppR still should have

the same vector annotation (2,4) as well as the previous time 3t . In addition,),2,1(4tppR has its

bf-annotation ib(3,4). There are still two alternatives for the bf-relation between 2Pr and 3Pr :

(i) if 3Pr starts immediately after 2Pr finishes,)4,3,2(tppR has bf-annotation)6,1(mb ;

(ii) if 3Pr does not start immediately after 2Pr finishes,),3,2(4tppR has bf-annotation

)7,0(db .

Either way, we have only information that 2Pr has just finished at time 4t , which can be

represented in vector annotation (0, 6) that is the greatest lower bound of the set {(1,6), (0,7)}.

Annotated Logic Program EVALPSN Based Process Order Control 7

]),6,0[(:),3,2(],),4,3[(:),2,1(],),4,2[(:),1,0(444 tppRtppRtppR .

At time t5, 0Pr has finished before 1Pr finishes. Then,),1,0(5tppR has bf-annotation)5,2(jb ,

and),3,2(5tppR also has bf-annotation)7,0(db because 3Pr has not started yet.

]),7,0[(:),3,2(],),4,3[(:),2,1(],),4,2[(:),1,0(555 tppRtppRtppR .

We note that all the three bf-relations can be determined at time 5t before 1Pr finishes and

3Pr starts.

Example 2

We consider two brewery pipeline processes, brewery and pipeline cleaning ones that are

scheduled in Figure 6. Each process })3,2,1,0{(Pr ii has its process order safety property

iSPR to be assured.

SPR-0 0Pr must start before any other processes,

SPR-1 1Pr must start immediately after 0Pr starts,

SPR-2 2Pr must start immediately after 1Pr finishes,

SPR-3 3Pr must start immediately after 0Pr and 2Pr finish.

Fig. 6. Brewery Pipeline Process Schedule.

All the safety properties 3,2,1,0SPR are translated into

],),1,0[(:),0(]),1,0[(:),0(~

],),1,0[(:),0(

]),0,4[(:),3,0(~]),0,4[(:),2,0(~]),0,4[(:),1,0(~

tpStpS

tpS

tppRtppRtppR

 (1)

],),1,0[(:),1(]),1,0[(:),1(~

],),1,0[(:),1(]),0,4[(:),0,1(

tpStpS

tpStppR

 (2)

],),1,0[(:),2(]),1,0[(:),2(~

],),1,0[(:),2(]),0,7[(:),1,2(~]),0,6[(:),1,2(

tpStpSt

tpStppRtppR

 (3)

],),1,0[(:),3(]),1,0[(:),3(~

],),1,0[(:),3(

]),0,7[(:),2,3(~]),0,6[(:),2,3(]),0,6[(:),0,3(

tpStpSt

tpS

tppRtppRtppR

 (4)

where each EVALP literal })3,2,1,0{(]/),1,0[(:),(itpiS denotes that it is permit-

ted/forbidden to start the process iPr at time t .

Now, we show how the process order control is carried out in real-time by bf-EVALPSN

programming. We consider variation of the vector annotations of bf-literals,),1,0(tppR ,

),2,0(tppR ,),3,0(tppR ,),1,2(tppR and),2,3(tppR .

Kazumi Nakamatsu 8

Stage 0 since no process has started at time 0t , the vector annotation of each bf-literals is (0,0).

Then, by bf-EVALPSN clauses (1), (2), (3) and (4), we obtain

]),1,0[(:),2(],),1,0[(:),1(],),1,0[(:),0(000 tpStpStpS and]),1,0[(:),3(0 tpS . Therefore,

only 0Pr is permitted for starting.

Stage 1 if both 0Pr and 1Pr have started but neither of them have finished yet at time 1t , then

we obtain

].),4,0[(:),3,0(

],),0,0[(:),2,3(],),4,0[(:),2,0(

],),0,4[(:),1,2(],),4,2[(:),1,0(

1

11

11

tppR

tppRtppR

tppRtppR

Then, by (1), (2), (3) and (4), we obtain]),1,0[(:),2(1 tpS and]),1,0[(:),3(1 tpS . Therefore,

neither 2Pr nor 3Pr are permitted for starting.

Stage 2 if 1Pr has just finished, 2Pr has not started yet, and 0Pr has not finished yet at time 2t ,

then we obtain

].),4,0[(:),3,0(

],),0,0[(:),2,3(],),4,0[(:),2,0(

],),0,6[(:),1,2(],),4,3[(:),1,0(

2

22

22

tppR

tppRtppR

tppRtppR

Fig. 7. Process Timing Chart 1.

Then, by (1), (2), (3) and (4), we obtain]),1,0[(:),2(0 tpS and]),1,0[(:),3(0 tpS . Therefore,

2Pr has been permitted for starting, however 3Pr is still for forbidden from starting.

Stage 3 if 0Pr has just finished, 3Pr has not started yet, and 2Pr has not finished yet at time 3t ,

then we obtain

].),6,0[(:),3,0(

],),0,4[(:),2,3(],),5,2[(:),2,0(

],),1,6[(:),1,2(],),4,3[(:),1,0(

3

33

33

tppR

tppRtppR

tppRtppR

Then, by (1), (2), (3) and (4), we obtain]),1,0[(:),3(0 tpS . Therefore, 3Pr is still forbidden

from starting because 2Pr has not finished yet.

Stage 4 if 2Pr has just finished and 3Pr has not started continuously yet at time 4t , then we

obtain

].),7,0[(:),3,0(

],),0,6[(:),2,3(],),5,2[(:),2,0(

],),1,6[(:),1,2(],),4,3[(:),1,0(

4

44

44

tppR

tppRtppR

tppRtppR

Annotated Logic Program EVALPSN Based Process Order Control 9

which represent the bf-relations between the processes. Then, by (1), (2), (3) and (4), we

have]),1,0[(:),3(0 tpS . Therefore, 3Pr is permitted for starting because both 0Pr and Pr2 have

finished.

Transitive Inference Rules in Bf-EVALPSN

We have introduced that safety verification based real-time process order control can be

performed by simple integer computation in vector annotations by bf-EVALPSN pro-

gramming. However, if we need to control all bf-relations between any two processes in real-

time, it takes much computation time. In this section, we introduce the transitive reasoning of

bf-relations in bf-EVALPSN, which can reduce process order control time. If we use such a

reasoning system, the computation of 45 bf-relations can be reduced to that of just 9 neighbor

bf-relations between 0Pr and 1Pr , 1Pr and 2Pr ,…, 8Pr and 9Pr . We introduce some transitive

inference rules to reason the bf-annotation of),,(tpkpiR from the bf-annotations of

),,(tpjpiR and),,(tpkpjR in real-time, which are called bf-relation inference rules (bf-inf

rules for short), and show how to apply them to real-time process order control with a simple

example.

Suppose that three processes, 0Pr , 1Pr and 2Pr are processed according to the three process

time charts in Figure 7, 8, 9 in which only the start time of 2Pr varies time 3t to 5t and no bf-

relation varies. The vector annotations of),1,0(tppR ,),2,1(tppR and),2,0(tppR at each time

it are shown by the three timing charts in Table 1. If we consider the annotations at time 2,1t ,

Fig. 8. Process Timing Chart 2.

Fig. 9. Process Timing Chart 3.

we obtain the following bf-inf rule:

].),4,0[(:),2,0(]),4,0[(:),1,0(1 tppRtppRrule (5)

Furthermore, if we also focus on the vector annotations at time 4,3t in Table 1, we obtain the

following bf-inf rules:

],),4,2[(:),2,0(]),4,2[(:),2,1(]),4,2[(:),1,0(2 tppRtppRtppRrule (6)

Kazumi Nakamatsu 10

].),5,2[(:),2,0(]),4,2[(:),2,1(]),5,2[(:),1,0(3 tppRtppRtppRrule (7)

As well as rule-2 and rule-3, we also obtain the following bf-inf rules by taking the vector

annotations at time 4t into account.

].),6,1[(:),2,0(]),4,2[(:),2,1(]),5,2[(:),1,0(4 tppRtppRtppRrule (8)

].),7,0[(:),2,0(

]),4,0[(:),2,1(]),4,2[(:),2,1(~]),5,2[(:),1,0(5

tppR

tppRtppRtppRrule

 (9)

Among the above bf-inf rules, rule-3(7) and rule-4(8) have the same precedent (program clause

body),

],),4,2[(:),2,1(]),5,2[(:),1,0(tppRtppR

and different consequents(program clause heads)

].),6,1[(:),2,0(]),5,2[(:),2,0(tppRandtppR

Having the same precedent may cause duplicate application of rule-3(7) and rule-4(8).

Obviously they cannot be uniquely applied without extra information. In order to avoid such

duplicate application of bf-inf rules, we consider applicable orders of bf-inf rules.

 order-1 rule-1rule-2rule-3

 order-2 rule-1rule-4

 order-3 rule-1rule-5

Table 1. Vector Annotations of Process Time Chart 1,2,3

As indicated in the above orders, rule-3(7) should be applied immediately after rule-2(6), on the

other hand, rule-4(8) should be done immediately after rule-1(5). Thus, if we take the applicable

orders order-1,2,3, into account, such confusions may be avoided. Actually, bf-inf rules are not

complete, that is to say there exist some other cases in which bf-relations cannot be uniquely

determined by bf-inf rules, although we will not address such topics in this paper.

We show a real-time application of order-1,2,3 based on the chart 2 in Figure 8.

Annotated Logic Program EVALPSN Based Process Order Control 11

At time t1,

 only rule-1(5) can be applied, thus,]),4,0[(:),2,0(1 tppR is obtained.

At time t2,3,

no bf-inf rule can be applied.

At time t4,

both rule-3(7) and rule-4(8) can be applied, however, since there is no order such

that
u
rule-1 rule-3 …" in order-1,2,3, only rule-4(8) can be uniquely applied

according to order-2, and]),7,0[(:),2,0(4 tppR is obtained.

Here we introduce another bf-inf rule. For example, suppose that three processes 0Pr , 1Pr and

2Pr have started sequentially, and only 1Pr has finished at time t as shown in Figure 10. Then,

two bf-relations between 0Pr , 1Pr and 1Pr , 2Pr have already determined, which are represented

by the following bf-EVALP clauses with complete bf-annotations,

].),6,1[(:),2,1(]),4,3[(:),1,0(tppRandtppR (10)

Fig. 10. Anticipation of bf-relation.

On the other hand, the bf-relation between 0Pr and 2Pr cannot be determined then. However, if

we use the following bf-inf rule:

].),4,2[(:),2,0(]),5,2[(:),2,1(]),4,3[(:),1,0(6 tppRtppRtppRrule (11)

the vector annotation (2,4) of),2,0(tppR is derived. Moreover, since the vector annotation

(2,4) is the greatest lower bound of the set, it is reasoned that the bf-relation between 0Pr and

2Pr must be either jb(2,5) or ib(3,4). As mentioned here, bf-relations can be reasoned from

incomplete bf-annotations in bf-EVALPSN. Such anticipatory reasoning in bf-EVALPSN could

be applied to safety verification or control.

Concluding remarks

In this paper, we have introduced bf-EVALPSN that can easily deal with before-after relations

between processes dynamically, and shown how bf-EVALPSN can be applied to real-time

process order control with simple examples. We have also briefly introduced that bf-EVALPSN

has a dynamic method to reason bf-relations transitively.

As related original works, an interval temporal logic has been proposed by Allen et al. for

knowledge representation of properties, actions and events[l]. In Allen's temporal logic, six

predicates representing primitive bf-relations are used. Although Allen's temporal logic is a

logically sophisticated tool to develop planning, natural language understanding and so on, it

does not seem to be so suitable for real-time processing because bf-relations cannot be

Kazumi Nakamatsu 12

determined until both two processes finish. On the other hand, in bf-EVALPSN process order

control, vector annotations to represent bf-relations can be determined in real-time according to

start/finish information of processes even if only one process has started. Moreover, it has been

shown in [7] that EVALPSN can be implemented on a microchip as electronic circuits.

Therefore, bf-EVALPSN is a more practical and suitable intelligent tool for real-time process

order control.

As our future works, we are considering more practicai case studies to improve the bf-

EVALPSN based process order control, especially applications of transitive reasoning by bf-inf

rules
2
.

References

1. A l l e n , J . F . , F e r g u s o n , G . – Actions and Events in Interval Temporal Logic. J.Logic and

Computation vol.4, pp.531-579, 1994.

2. B l a i r , H . A . , S u b r a h m a n i a n , V . S . – Paraconsistent Logic Programming. Theoretical

Computer Science vol.68, pp.135-154, 1989.

3. d a C o s t a , N . C . A . , S u b r a h m a n i a n , V . S . , V a g o , C – The Paraconsistent Logics

PΤ. Zeitschrift fur Mathematische Logic und Grundlangen der Mathematik vol.37, pp.139-148, 1991.

4. N a k a m a t s u , K . , A b e , J . M . , S u z u k i , A . – Annotated Semantics for Defeasible Deontic

Reasoning. Lecture Notes on Artificial Intelligence voi.2005, pp.432-440, Springer, 2001.

5. N a k a m a t s u , K . – Intelligent Information Systems Based on Paraconsistent Logic. In Innovations

in Intelligent Systems and Applications Chap.11. Studies in Fuzziness and Soft Computing, vol. 140,

pp.257-283, Springer-Verlag, 2004.

6. N a k a m a t s u , K . – Pipeline Valve Control Based on EVALPSN Safety Verification. J. Advanced

Computational Intelligence and Intelligent Informatics, vol.10, pp.647-656, 2006.

7. N a k a m a t s u , K . , M i t a , Y . , S h i b a t a , T . – An Intelligent Action Control System Based on

Extended Vector Annotated Logic Program and its Hardware Implementation. J. Intelligent

Automation and Soft Computing, vol.13, pp.289-304, 2007.

8. N a k a m a t s u , K . , A b e . J . M . , A k a m a , S . – Paraconsistent Before-after Relation Reasoning

Based on EVALPSN. In New Directions in Intelligent Interactive Multimedia. Studies in

Computational Intelligence, vol.142, pp.265-274, Springer, 2008.

Program logic cu adnotare EVALPSN

pentru procesele de reglare

Rezumat

Am propus deja cu alte ocazii un program logic paraconsistent denumit EVALPSN (Program Logic tip

Vector Extins cu Negatie Puternica) și l-am aplicat către diferite sarcini de reglare, bazate pe verificarea

siguranței. În această lucrare, un nou EVALPSN, denumit bf (înainte-după)-EVALPSN care poate trata

relațiile tip înainte-după între două procese, este introdus. Iar aplicațiile lui pentru procesele de reglare

desfășurate în timp real bazate pe verificarea siguranței sunt descrise împreună cu exemple simple. Mai

mult, sunt prezentate anumite funcții utile ale bf-EVALPSN pentru reglarea în timp-real.

2
 This research is financially supported by Japanese Scientific Research Grant (C) No.20500074.

