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Abstract 

A new definition of Neuro-Fuzzy Dynamical Systems is introduced, using the concept of Fuzzy Dynamical 

Systems (FDS) in conjunction with High Order Neural Network Functions (F-HONNFs). The dynamical 

System is assumed nonlinear and totally unknown. Its approximation by a special form of a fuzzy 

dynamical system (FDS) is first proposed and in the sequel the fuzzy rules are approximated by 

appropriate HONNF’s. Thus the identification scheme leads to a Recurrent High Order Neural Network, 

which however, takes into account the fuzzy output partitions of the initial FDS. The proposed scheme 

does not require a priori experts’ information on the number and type of input variable membership 

functions, making it less vulnerable to initial design assumptions. After the identification process the 

system can be adaptively controlled either directly or indirectly. The indirect control case is considered 

in this paper. By doing so, weight updating laws for the involved HONNs are presented. With rigorous 

proofs it is guaranteed that the errors converge to zero exponentially fast, or at least become uniformly 

ultimately bounded. At the same time the stability is guaranteed by proving that all signals in the closed 

loop remain bounded. During both the identification and control process it is assumed that the centers 

and shapes of membership functions are known, and the HONN parameters are identified, in which case 

a directional variation is obtained. In order to guarantee existence of the control law, a new method is 

defined, which is termed parameter hopping, replacing the well known projection. Thus, the existence of 

the control law it is rigorously proved, guaranteeing stability properties. 

Key words: neural networks, fuzzy systems, adaptive control, parameter hopping. 

Introduction 

Nonlinear dynamical systems can be represented by general nonlinear dynamical equations of 

the form 

),( uxfx  .          (1) 

The mathematical description of the system is required, so that we are able to control it. 

Unfortunately, the exact mathematical model of the plant, especially when this is highly 

nonlinear and complex, is rarely known and thus appropriate identification schemes have to be 

applied which will provide us with an approximate model of the plant. 

It has been established that neural networks and fuzzy inference systems are universal 

approximators [1, 2, 3], i.e., they can approximate any nonlinear function to any prescribed 

accuracy provided that sufficient hidden neurons and training data or fuzzy rules are available. 
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Recently, the combination of these two different technologies has given rise to fuzzy neural or 

neuro fuzzy approaches, that are intended to capture the advantages of both fuzzy logic and 

neural networks. Numerous works have shown the viability of this approach for system 

modeling [4 - 12]. 

The neural and fuzzy approaches are most of the time equivalent, differing between each other 

mainly in the structure of the approximator chosen. Indeed, in order to bridge the gap between 

the neural and fuzzy approaches several researchers introduce adaptive schemes using a class of 

parameterized functions that include both neural networks and fuzzy systems [6 - 12]. 

Regarding the approximator structure, linear in the parameters approximators are used in [10], 

[13], and nonlinear in [14, 15, 16]. 

Adaptive control theory has been an active area of research over the past years [13 - 30]. The 

identification procedure is an essential part in any control procedure. In the neuro or neuro fuzzy 

adaptive control two main approaches are followed. In the indirect adaptive control schemes [13 

- 19], first the dynamics of the system are identified and then a control input is generated 

according to the certainty equivalence principle. In the direct adaptive control schemes [20] - 

[26] the controller is directly estimated and the control input is generated to guarantee stability 

without knowledge of the system dynamics. Also, many researchers focus on robust adaptive 

control that guarantees signal boundness in the presence of modeling errors and bounded 

disturbances [27]. In [28] both direct and indirect approaches are presented, while in [29],[30] a 

combined direct and indirect control scheme is used. 

Recently, [31, 32] and [33], high order neural network function approximators (HONNFs) have 

been used in a new neuro-fuzzy representation of unknown dynamical systems. This 

approximation depends on the fact that fuzzy rules could be identified with the help of 

HONNFs. 

In adaptive fuzzy control, the identification phase usually consists of two categories: structure 

identification and parameter identification. Structure identification involves finding the main 

input variables out of all possible, specifying the membership functions, the partition of the 

input space and determining the number of fuzzy rules which is often based on a substantial 

amount of heuristic observation to express proper strategy’s knowledge. Most of structure 

identification methods are based on data clustering, such as fuzzy Cmeans clustering [9], 

mountain clustering [11], and subtractive clustering [12]. These approaches require that all 

input-output data are ready before we start to identify the plant. So these structure identification 

approaches are off-line. 

This paper is based on [31] and [33]. HONNFs are used for the neuro fuzzy identification of 

unknown nonlinear dynamical systems. Regarding the underlying Fuzzy system description of 

the method, the required a-priori information obtained by linguistic information or data is 

obtained also off-line but is very limited. The only required information is an estimate of the 

centers of the output fuzzy membership functions. Information on the input variable 

membership functions and on the underlying fuzzy rules is not necessary because this is 

automatically estimated by the HONNFs. This way the proposed method is less vulnerable to 

initial design assumptions. The parameter identification is then easily addressed by HONNFs, 

based on the linguistic information regarding the structural identification of the output part and 

from the numerical data obtained from the actual system to be modeled. So, the parameters of 

identification model are updated on - line in such a way that the error between the actual system 

output and the model output reaches zero exponentially fast. 

It is assumed that the nonlinear system is affine in the control and could be approximated with 

the help of two independent fuzzy subsystems. Every fuzzy subsystem is approximated from a 

family of HONNFs, each one being related with a group of fuzzy rules. Weight updating laws 

are given and we prove that when the structural identification is appropriate then the error 

converges very fast to zero. 
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The paper is organized as follows. Section II presents preliminaries related to the concept of 

adaptive fuzzy systems (AFS) and the terminology used in the remaining paper, while Section 

III reports on the ability of HONNFs to act as fuzzy rule approximators. The new neuro fuzzy 

representation and the indirect control of affine in the control dynamical systems is introduced 

in Section IV, where the associated weight adaptation laws are given and the method of 

parameter hopping is briefly explained. Simulation results on the identification of well known 

benchmark problems are given in Section V and the performance of the proposed scheme is 

compared to another well known approach of the literature. Finally, Section VI concludes the 

work. 

Preliminaries 

In this section we briefly present the notion of adaptive fuzzy systems and their conventional 

representation. We are also introducing the representation of fuzzy systems using the rule firing 

indicator functions (RFIF), simply called indicator functions (IF), which is used for the 

development of the proposed method. 

A. Adaptive Fuzzy Systems 

The performance, complexity, and adaptive law of an adaptive fuzzy system representation can 

be quite different depending upon the type of the fuzzy system (Mamdani or Takagi-Sugeno). It 

also depends upon whether the representation is linear or nonlinear in its adjustable parameters. 

Suppose that the adaptive fuzzy system is intended to approximate the nonlinear function f(x). 

In the Mamdani type, linear in the parameters form, the following fuzzy logic representation is 

used [2, 3]: 
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l  are adjustable parameters, and l
iF

 are given membership functions of the input variables 

(can be Gaussian, triangular, or any other type of membership functions). 

In Tagaki-Sugeno formulation )(xf  is given by 

)()()(
1

xxgxf l

M

l
l 



 ,     (4) 

where nnllll xaxaaxg ,11,0, ...)(  , with ix , ni ...1  being the elements of vector x  and 

)(xl being defined in (3). According to [3], (4) can also be written in the linear to 

the parameters form, where the adjustable parameters are all niMlal ...1,...1,1,  . 

From the above definitions it is apparent in both, Mamdani and Tagaki-Sugeno forms that the 

success of the adaptive fuzzy system representations in approximating the nonlinear function 

)(xf depends on the careful selection of the fuzzy partitions of input and output variables. Also, 
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the selected type of the membership functions and the proper number of fuzzy rules contribute 

to the success of the adaptive fuzzy system. This way, any adaptive fuzzy or neuro-fuzzy 

approach, following a linear in the adjustable parameters formulation becomes vulnerable to 

initial design assumptions related to the fuzzy partitions and the membership functions chosen. 

In this paper this drawback is largely overcome by using the concept of rule indicator functions, 

which are in the sequel approximated by High order Neural Network function approximators 

(HONNFs). This way there is not any need for initial design assumptions related to the 

membership values and the fuzzy partitions of the if part. 

B. Fuzzy system description using rule indicator functions 

Let us consider the system with input space mRx and state - space nRx   , with its i/o 

relation being governed by the following equation 

))(),(()( kukxfkz  ,     (5) 

where )(f  is a continuous function and k  denotes the temporal variable. In case the system is 

dynamic the above equation could be replaced by the following differential equation 

))(),(()( kukxfkx  .     (6) 

By setting )](),([)( kukxky  , Eq. (5) may be rewritten as follows 

))(()( kyfkz  ,            (7) 

with nmRy  . 

In case f  in (7) is unknown we may wish to approximate it by using a fuzzy representation. In 

this case both )](),([)( kukxky  and )(kz  are initially replaced by fuzzy linguistic variables. 

Experts or data depended techniques may determine the form of the membership functions of 

the fuzzy variables and fuzzy rules will determine the fuzzy relations between )(ky and )(ku . 

Sensor input data, possibly noisy and imprecise, enter the fuzzy system, are fuzzified, are 

processed by the fuzzy rules and the fuzzy implication engine and are in the sequel defuzzified 

to produce the estimated )(kz  [2, 3]. We assume here that a Mamdani type fuzzy system is 

used. 

Let now nlll

mnjjj

,...,2,1
,...,2,1 

  be defined as the subset of ),( ux  pairs, belonging to the 

th
mnjjj ),...,,( 21  input fuzzy patch and pointing - through the vector field )(f  - to the subset of 

)(kz , which belong to the th
mnjjj ),...,,( 21   output fuzzy patch. In other words, 

nlll

mnjjj

,...,2,1
,...,2,1 

 contains input value pairs that are associated through a fuzzy rule with output 

values. 

In order to present the lemma of Section III, we define the Indicator function (IF) nlll

mnjjj
I

,...,2,1
,...,2,1 

of 
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mnjjj

,...,2,1
,...,2,1 

 , that is, 



 

 
 otherwise

kukxif
kukxI
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mnjjnlll

mnjjj
0

))(),((
))(),((

,...,1
,...,1

,...,2,1
,...,2,1


  (8) 

where  denotes the firing strength of the rule. 

Define now the following system 
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u(k))(x(k),  )(
,...,2,1
,...,2,1

,...,1
,...,1

nlll

mnjjj
nll

mnjj
Izkz


  ,   (9) 

where nnll

mnjj
Rz 



,...,1
,...,1

be any constant vector consisting of the centers of the membership 

functions of each output variable iz and ))(),((
,...,1
,...,1

kukxI nll

mnjj 
is the IF of (8) normalized by the 

sum of all IF participating in the summation of (9). Then, the system in (9) represents the fuzzy 

system (FS). It is obvious that Eq. (9) can be also valid for dynamic systems. In its dynamical 

form it becomes 

u(k))(x(k),  )(
,...,2,1
,...,2,1

,...,1
,...,1

nlll

mnjjj
nll

mnjj
Izkx


  ,           (10) 

where nnll

mnjj
Rx 



,...,1
,...,1

 be again any constant vector consisting of the centers of fuzzy partitions 

of every variable ix and ))(),((
,...,1
,...,1

kukxI nll

mnjj 
is the IF. 

The HONNF’s as fuzzy rule approximators 

The main idea in presenting the main result of this section lies on the fact that functions of high 

order neurons are capable of approximating discontinuous functions; thus, we use high order 

neural network functions in order to approximate the indicator functions nll

mnjj
I

,...,1
,...,1 

. The relevant 

assumptions and proofs that make this approximation valid can be found in [31]. Here, only the 

definitions of HONNFs are given. 

Let us define the following high order neural network functions (HONNFs). 

 
 


L

k kIj

kjd

jkwLwuxN
1

)(
),;,( ,         (11) 

where },...,,{ 21 LIII is a collection of L not-ordered subsets of )(},,...,2,1{ kdnm j are non-

negative integers, j are sigmoid functions of the state or the input and T
Lwww ]...[: 1 are the 

HONNF weights. Eq. (11) can also be written 





L

k
kk uxswLwuxN

1

),(),;,( ,       (12) 

where ),( uxsk are high order terms of sigmoid functions of the state and/or input. 

It has been proved [31] that a HONNF of the form in Eq. (12) can approximate the indicator 

function nll

mnjj
I

,...,1
,...,1 

. 

Indirect adaptive neuro-fuzzy control 

A. Neuro fuzzy representation and identification 

We consider affine in the control, nonlinear dynamical systems of the form 

uxGxfx  )()( ,            (13) 

where the state nRx  is assumed to be completely measured, the control u  is in nR , f is an 

unknown smooth vector field called the drift term and G  is a matrix with columns the unknown 
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smooth controlled vector fields nigi ,...,2,1,  and ],...,,[ 21 ngggG  . The above class of 

continuous-time nonlinear systems are called affine, because in (13) the control input appears 

linear with respect to G . The main reason for considering this class of nonlinear systems is that 

most of the systems encountered in engineering, are by nature or design, affine. Furthermore, 

we note that non affine systems of the form given in (1) can be converted into affine, by passing 

the input through integrators, a procedure known as dynamic extension. 

In our approach, referred to as indirect adaptive fuzzy-HONNF control, the plant parameters are 

estimated on-line except of the state fuzzy partitions, which are used to calculate the controller 

parameters. The basic structure of the indirect adaptive fuzzy-RHONN controller is shown in 

Figure 1. 

Fig. 1. Overall scheme of the proposed indirect adaptive neuro-fuzzy control system. 

The following mild assumptions are also imposed on (13), to guarantee the existence and 

uniqueness of solution for any finite initial condition and Uu . 

Proposition 1: Given a class U  of admissible inputs, then for any Uu and any finite initial 

condition, the state trajectories are uniformly bounded for any finite 0T . Hence, )(Tx . 

Proposition 2: The vector fields nigf i ,...,2,1,,   are continuous with respect to their 

arguments and satisfy a local Lipchitz condition so that the solution )(tx of (13) is unique for 

any finite initial condition and Uu . 

We are using an affine in the control fuzzy dynamical system, which approximates the system 

in (13) and uses two fuzzy subsystem blocks for the description of )(xf and )(xG as follows 
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where the summation is carried out over the number of all available fuzzy rules, 1, II are 

appropriate fuzzy rule indicator functions and the meaning of indices nll

njj

,...,1
,...,1

 has already been 

described in Preliminaries.  

According to [31], every indicator function can be approximated with the help of a suitable 

HONNF. Therefore, every 1, II can be replaced with a corresponding HONNF as follows 
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where 1, NN are appropriate HONNFs. 

In order to simplify the model structure, since some rules result to the same output partition, we 

could replace the NNs associated to the rules having the same output with one NN and therefore 

the summations in (16),(17) are carried out over the number of the corresponding output 

partitions. Therefore, the affine in the control fuzzy dynamical system in (14), (15) is replaced 

by the following equivalent affine Recurrent High Order Neural Network (RHONN), which 

depends on the centers of the fuzzy output partitions lf and lig ,  

  
  


Npf

l
i

n

i
ll

iNpg

l
il uNgNfA

1 1
1

1

))()(()(ˆˆ  ,        (18) 

or in a more compact form 

uSWXXWSA )()(ˆˆ
111   ,           (19) 

where A  is a nn  stable matrix which for simplicity can be taken to be diagonal as 

121 ,],,...,,[ XXaaadiagA n are matrices containing the centres of the partitions of every fuzzy 

output variable of )(xf  and )(xg  respectively, )(),( 1  SS  are matrices containing high order 

combinations of sigmoid functions of the state   and 1,WW are matrices containing respective 

neural weights according to (18) and (12). The dimensions and the contents of all the above 

matrices are chosen so that )(XWS is a ln vector and )(111 SWX  is a nn matrix. Without 

compromising the generality of the model we assume that the vector fields in (15) are such that 

the matrix G  is diagonal. For notational simplicity we assume that all output fuzzy variables are 

partitioned to the same number, m , of partitions. Under these specifications X is a 

mnn  block diagonal matrix of the form ),...,,( 21 nXXXdiagX  with each iX  being an m-

dimensional raw vector of the form 

] ... [ 21
i

m
iii fffX  , 

where i
pf  denotes the centre of the p-th partition of if . Also, T

kssS )]()...([)( 1   , where 

each )(is with },...,2,1{ ki  , is a high order combination of sigmoid functions of the state 

variables and W is a kmn  matrix with neural weights. W assumes the form 
TnWWW ]...[ 1 , where each iW is a matrix km

i
jlw ][ . 1X is a mnn  block diagonal matrix 

),...,,( 12111
1

nXXXdiagX  with each iX1 being an m-dimensional raw vector of the form 

] ...  [ ,,
2

,
1

1 ii
m

iiiii gggX  , 

where ii
kg denotes the center of the k-th partition of iig . 1W is a nnm   block diagonal matrix 

),...,,( 12111
1

nWWWdiagW  , where each iW1 is a column vector 1
1 ][ m

i
jlw of neural weights. 

Finally, )(1 S is a nn  diagonal matrix with each diagonal element )(is  being a high order 

combination of sigmoid functions of the state variables. 

It has to be mentioned here that the proposed neurofuzzy representation, finally given by (19), 

offers some advantages over other fuzzy or neural adaptive representations. Considering the 

proposed approach from the adaptive fuzzy system (AFS) point of view, the main advantage is 

that the proposed approach is much less vulnerable in initial AFS design assumptions because 

there is no need for apriori information related to the IF part of the rules (type and centers of 
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membership functions, number of rules). This information is replaced by the existence of 

HONNFs. Considering the proposed approach from the NN point of view, the final 

representation of the dynamic equations is actually a combination of High Order Neural 

Networks, each one being specialized in approximating a function related to a corresponding 

center of output state membership function. This way, instead of having one large HONNF 

trying to approximate ”everything” we have many, probably smaller, specialized HONNFs. 

Conceptually, this strategy is expected to present better approximation results; this is also 

verified in the simulations section. Moreover, as it will be seen in section IV-C, due to the 

particular bond of each HONNF with one center of an output state membership function, the 

existence of the control law is assured by introducing a novel technique of parameter ”hopping” 

in the corresponding weight updating laws. 

B. Parametric uncertainty 

We assume the existence of only parameter uncertainty, so, we can take into account that the 

actual system (13) can be modeled by the following neural form 

uSWXSXWA )(*)(* 111   .    (20) 

Define now, the error between the identifier states and the real states as 

  ˆe .        (21) 

Then from (19) and (21) we obtain the error equation 

uSWXSWXAee )(
~

)(
~

111   ,       (22) 

where *
~

WWW   and *
111

~
WWW  . 

Our objective is to find suitable control and learning laws to drive both e  and   to zero, while 

all other signals in the closed loop remain bounded. Taking u  to be equal to 

)()]([ 1
111  XWSSWXu  ,      (23) 

and substituting it into (19) we finally obtain 

 ˆˆ A                 (24) 

In the next theorem the weight updating laws are given, which can serve both the identification 

and the control objectives provided that the updating of the weights of matrix 1W  is performed 

so that the existence of 1
111 )]([ SWX  is assured. 

Theorem 1: Consider the identification scheme given by (22). Provided that 1
111 )]([ SWX  

exists the learning law 

a) For the elements of iW  

)(lii
i
j

i
jl sepfw  ;     (25) 

b) For the elements of iW1  

)( 
1

1 iiii
ii

j
i
j suepgw  ;     (26) 

or equivalently )()(11 iiii
Tii suepXW  with ni ,...,1 , mj ,...,1 , kl ,...,1  guarantees the 

following properties. 
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 LWWe 1
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where 0P  is chosen to satisfy the Lyapunov equation 

IPAPA T  . 

Taking the derivative of the Lyapunov function candidate and taking into account (24) we get 

    
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SWPXeWWtr TT ~
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~~
{ 
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uSWPXeWWtr TT
11111

~
}

~~
{ 


. 

Then, taking into account the form of W  and 1W  the above equations result in the element wise 

learning laws given in (25),(26). These laws can also be written in the following compact form 

TT PeSXW   ,         (27) 

TT PEUSXW 111  ,          (28) 

where E  and U  are diagonal matrices such that ),...,( 1 neediagE   and ),...,( 1 nuudiagU  . 

Using the above Lyapunov function candidate V  and proving that 0V  all properties of the 

theorem are assured [23]. 

Remark 1: The control law (23) can be also extended to the following form 

])([)]([ 1
111 kxXWSSWXu    ,         (29) 

where k  is appropriate positive definite diagonal gain matrix. It can be easily verified that with 

this control law the negativeness of the derivative of the Lyapunov function is further enhanced. 

Therefore, term kx  is actually acting as a robustifying term. 

Proof: Indeed, by using the extended control law (29) the state estimate dynamics become 

kxA   ˆ̂ .                  (30) 
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Then, using the weight updating laws given in theorem 1 the derivative of the Lyapunov 

function becomes 

xKPeKPxxeVxKPeeV TTTT ˆˆˆˆ
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C. Introduction to the parameter hopping 

The weight updating laws presented previously in subsection B are valid when the control law 

signal in (23) exists. Therefore, the existence of 1
111 )]([ SWX  has to be assured. Since 

)(1 S is diagonal with its elements 0)( is and 11,WX are block diagonal the existence of the 

inverse is assured when n1,...,i ,0 11  ii WX . Therefore, 1W has to be confined such that 

0 11  i
ii WX  , with i  being a design parameter. In case the boundary defined by the 

above confinement is nonlinear the updating 1W can be modified by using a projection algorithm 

[23]. However, in our case the boundary surface is linear and the direction of updating is normal 

to it because iii XWX 111 ][  . Therefore, the projection of the updating vector on the 

boundary surface is of no use. Instead, using concepts from multidimensional vector geometry 

we modify the updating law such that, when the weight vector approaches (within a safe 

distance i ) the forbidden hyper-plane 0 11 
ii WX and the direction of updating is toward the 

forbidden hyper-plane, it introduces a hopping which drives the weights in the direction of the 

updating but on the other side of the space, where here the weight space is divided into two 

sides by the forbidden hyper-plane. This procedure is depicted in Figure 2, where a simplified 2-

dimensional representation is given. Theorem 2 below introduces this hopping in the updating 

law. 

Theorem 2: Consider the control scheme (22), (23), (24). 

The updating law: 

a) For the elements of iW given by (25) 

b) For the elements of iW1  given by the modified form: 

)()(11 iiii
Tii suepXW    0  11  i

ii WXif  , 

01111  ii
i

ii WXandWXor  , 

Tiii

iTiiiii
Tii XWX

XXtr
suepXW )(

}){(

2
)()( 111

11

11   , 

otherwise guarantees the properties of theorem 1 and assures the existence of the control 

signal. 

Proof: In order the properties of theorem 1 to be valid it suffices to show that by using the 

modified updating law for iW1  the negativeness of the Lyapunov function is not compromised. 
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Indeed the if part of the modified form of iW1 is exactly the same with (26) and therefore 

according to theorem 1 the negativeness of V is in effect. The if part is used when the weights 

are at a certain distance (condition if i
ii WX 11 ) from the forbidden plane or at the safe limit 

(condition i
ii WX  11 ) but with the direction of updating moving the weights far from the 

forbidden plane (condition 011  ii WX ). 

In the otherwise part of iW1 , term Tiii

iTi
XWX

XXtr
)(

}){(

2 111

11
  determines the magnitude of 

weight hopping, which as explained later and is depicted in Figure 3 has to be two times the 

distance of the current weight vector to the forbidden hyper-plane. Therefore the existence of 

the control signal is assured because the weights never reach the forbidden plane. Regarding the 

negativeness of ˙V  we proceed as follows. 

Fig. 2. Pictorial representation of parameter hopping.     Fig. 3. Vector explanation of parameter hopping. 

Let that iW *1 contains the initial values of iW1  provided from the identification part such that 

i
ii WX  *11 and that iii WWW *111 ~

 . Then, the weight hopping can be equivalently written 

with respect to ii
i

i WWasW
~

/
~

2
~ 111  . Under this consideration the modified updating law is 

rewritten as ii
iiiii

Tii WWsuepXW
~

/
~

2)()( 1111   . With this updating law it can be easily 

verified that   ˆˆ
2

1

2

1 TT eeV , with   being a positive constant expressed as 

  iiTi
i WWW

~
/)

~
()

~
(2 111

  , where the summation includes all weight vectors which require 

hopping. Therefore, the negativeness of  V  is actually enhanced. 

1) Vectorial proof of parameter hopping: In selecting the terms involved in parameter hopping 

we start from the vector definition of a line, of a plane and the distance of a point to a plane. The 

equation of a line in vector form is given by tar  , where a  is the position vector of a 

given point of the line, t  is a vector in the direction of the line and   is a real scalar. By giving 

different numbers to   we get different points of the line each one represented by the 

corresponding position vector r . The vector equation of a plane can be defined by using one 
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point of the plane and a vector normal to it. In this case dnanr  is the equation of the 

plane, where a  is the position vector of a given point on the plane, n  is a vector normal to the 

plane and d  is a scalar. When the plane passes through zero, then apparently 0d . To 

determine the distance of a point B with position vector b  from a given plane we consider 

Figure 3 and combine the above definitions as follows. Line BN is perpendicular to the plane 

and is described by vector equation nbr  , where n is the normal to the plane vector. 

However, point N also lies on the plane and in case the plane passes through zero 

n

nb
nnbnr


  0)(0 . 

Apparently, if one wants to get the position vector of 'B (the symmetrical of B in respect to the 

plane), this is given by 

n
n

nb
br


 2 . 

In our problem iWb 1 , our plane is described by the equation 011  ii WX and as it has already 

been mentioned the normal to it is the vector iX1 . 

Simulation results 

To demonstrate the potency of the proposed scheme some simulations are presented. First, the 

function approximation abilities of the proposed technique are compared with those of a well 

established approach of adaptive fuzzy system definition for function approximation (see Eq. 

(2)). The simulations are carried out on the approximation of a nonlinear function appearing in 

the inverted pendulum benchmark problem. The full potential of the method in both 

approximation and control is demonstrated in the next simulation, where the proposed method is 

compared with the well known RHONN approach [35] in approximating and regulating a DC 

Motor described by nonlinear equations. In this case both modeling approaches assume a 

generic affine in the control form. 

A. Comparison of function approximation abilities 

Let )(xf the function to be approximated, which assumes the following form 










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



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mm
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xxf

C
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11
2
2

1

21
cos

3

4

sincos
sin

),( .                (31) 

This function appears in the well known problem of the control of an inverted pendulum [34]. 

1x and 2x  are the angle from the vertical position and the angular velocity respectively 

of the pole. Also, 2/8.9 smg  is the acceleration due to gravity, cm is the mass of the cart, m  

is the mass of the pole, and l is the half-length of the pole. We choose kgmc 1 , kgm 1.0 , and 

ml 5.0  in the following simulation. In this case we also have that 6/1 x  and 6/2 x . 

It is our intention to compare the approximation abilities of the proposed Neuro-Fuzzy approach 

with Wang [2] adaptive Fuzzy approach. To this end we assume that )(xf  can be approximated 
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using Wang’s approach and Eq. (2) or alternatively by the XWS  term of Eq. (19) in the 

proposed approach. The weight updating laws are chosen to be: For the Wang approach ([2], 

page 115) 

)(1 xPbe c
T

f   ,            (32) 

where only the simplified approach, without parameter projection case was necessary to be 

used. 

For the proposed F-HONNF approach the following adaptive law is used: 

TT PeSXW          (33) 

The experimental data were obtained as follows: Based on Wang’s input variables limits and 

fuzzy partition we created an artificial stair-like signal shown in Figure 5. Input variables 1x  

and 2x  assume values in the interval ]6/,6/[  . 

Taking 5 samples from 1x  and 100 samples from 2x  we obtain 500 samples of 

),( 21 xxf presenting the stair discontinuities when 1x changes values. For the construction of i  

functions used in Eq. (2) and given in Eq. (3) we used the fuzzy membership partitions and the 

final rules characterizing ),( 21 xxf and shown in Figure 4, which comprises 25 fuzzy rules 

carefully chosen and given by Wang in [2] (page 129). Under these design specifications Eq. (2) 

assumes 25 adjustable weights. 

Fig. 4. Linguistic fuzzy rules for f(x1,x2). 

In order our model to be equivalent with regard to adjustable parameters we have chosen 5 

centers for the fuzzy output variables partition (-8, -4, 0, 4, 8) and 5 high order sigmoidal terms 

))(),(),()(),(),(( 2
2

1
2

2121 xsxsxsxsxsxs   in each HONNF. This configuration also assumes 25 

adjustable weights. Terms cPb1 in Eq. (32) and P (the updating learning rates) in Eq. (33) were 

chosen to have the same values. Figure 5 shows the approximation abilities of (2) with the 

updating law of (32) while Figure 6 shows the performance of the proposed approach with the 

updating law of (33). The mean squared error (MSE) for Wang’s approach was measured to 

be 41024.6  , while for the proposed approach was 51025.1  , demonstrating a significant 

(order of magnitude) increase in the approximation performance, although in our approach no a-

priori information regarding the inputs were used. 
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Fig. 5. Approximation of the f function with Eq. (2). 

 

Fig. 6. Approximation of the f function with the proposed approach. 

B. DC Motor Identification and Control 

In this section we present simulations, where the proposed approach is applied to solve the 

problem of controlling the speed of a 1 KW DC motor with a normalized model described by 

the following dynamical equations [35]. 
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Table 1. Parameter values for the DC motor 

Parameter Value 

aT/1  148.88 

mT/1  42.91 

mTK /0
 0.0129 

fT  31.88 

LT  0.0 

  2.6 

  1.6 
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The states are chosen to be the armature current, the angular speed and the stator 

flux T
aIx ][  . As control inputs the armature and the field voltages 

T
fa VVx ][ are used.  

With this choice, we have 
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which is of a nonlinear, affine in the control form. The regulation problem of a DC motor is 

translated as follows: Find a state feedback to force the angular velocity and the armature 

current to go to zero, while the magnetic flux varies. 

When   is considered constant, the above nonlinear 3
rd

 order system can be linearized and 

reduced to a second order form having 2 states ( aIx 1 and 2x   ), with the value   being 

included as a constant parameter. Inspired by that, we first assume that the system is described, 

within a degree of accuracy, by a 2
nd

 order (n = 2) nonlinear neuro-fuzzy system of the form 

(19), where aIx 1 and 2x . Coefficients ia in matrix A of (19) were chosen to be 15ia . 

The number of fuzzy partitions in X was chosen to be 5m and the range 

of ]0,5667.182[1 f , ]0566.30,3627.19[2 f . The depth of high order terms was 2k (only 

first order sigmoidal terms )(),( 21 xSxS were used). The number of fuzzy partitions of each 
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iig in 1X is 1m and the range of 11g is ]150,148[ and of 22g is ]44,42[ . The parameters of the 

sigmoidals that have been used are 4.01  , 52  , 121    and 021   .In the 

simulations carried out, the actual system is simulated by using the complete set of equations 

(35). The produced control law (23) is applied on this system, which in turn produces states 1x , 

2x , which in the sequel are used for the computation of the estimation errors that are employed 

by the updating laws. 

We simulated a 1KW DC motor with parameter values that can be seen in Table 1. Our two 

stage algorithm was applied. 

For comparison purposes we test the identification abilities of the proposed F-HONNF model 

against the conventional RHONN approximator presented in [35] using equivalent parameters 

regarding learning rate and number of high order terms used. Figure 7 shows the performance of 

the proposed scheme (blue line) against the corresponding performance of RHONN (red line). 

In the embedded figure a detailed comparison between the two methods for the first iterations is 

presented, where the graph is adjusted to the scale of the lower error values (those of the F-

HONNF model). The mean square error (MSE) was measured to be 510*87.5   for the 

proposed scheme and 210*18.1   for RHONN showing that the proposed scheme performs 

much better. 

Fig. 7. Evolution of e2. 

 

In the control phase, we assumed that the system variables have the initial values  

1.0 , 1.0aI , 98.0 . The proposed feedback control law and the corresponding control 

law of [35] were applied, with the corresponding initial weight values resulted from the 

identification phase. Figures 8, 9 give the evolution of the angular velocity and armature current 

respectively, for F-HONNF (blue line) and RHONN (red line). As can be seen, both   and 

aI converge to zero very fast as desired and the corresponding mean squared errors are 0.0017 

and 0.0135 for 1x  (F-HONNF Vs RHONN approach) and 0.0013 and 0.0094 for 2x  (F-

HONNF Vs RHONN approach), demonstrating a significant improvement when the proposed 

method is used. 
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Conclusion 

A new neuro-fuzzy approach for the identification and control of unknown non linear plants was 

presented in this paper. The approach uses the concept of Adaptive Fuzzy Systems (AFS) 

operating in conjunction with High Order Neural Network Functions (F-HONNFs). Compared 

to other neuro-fuzzy approaches of the literature, the proposed scheme does not require a-priori 

experts’ information on the number and type of input variable membership functions making it 

less vulnerable to initial design assumptions. Weight updating laws for the involved HONNFs 

were provided, which guarantee that both the identification error and the system states reach 

zero exponentially fast, while keeping all signals in the closed loop bounded. A method of 

parameter hopping assures the existence of the control signal and is incorporated in the weight 

updating law. 

Fig. 8. Convergence of the angular velocity to zero from 0.1 initially. 

Fig. 9. Convergence of the armature current to zero from 0.1 initially. 
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Noi tendinţe în identificarea şi conducerea 

sistemelor neuro-fuzzy  
Rezumat  

În acest articol se introduce o definiţie nouă a sistemelor dinamice neuro-fuzzy, folosind conceptul de 

sistem fuzzy dinamic (FDS) în conjuncţie cu noţiunea de funcţii neuronale de ordin superior (F-HONNF). 

Se presupune că sistemul dinamic este neliniar şi în întregime necunoscut. Se propune mai întâi 

aproximarea lui cu ajutorul unei forme speciale de sistem fuzzy dinamic (FDS) iar regulile fuzzy sunt 

aproximate prin HONNF potrivite. Astfel, schema de identificare conduce la o reţea neuronală recurentă 

de ordin superior care, totuşi, ia în considerare partiţiile ieşirii fuzzy a sistemului FDS initial. Schema 

propusă nu necesită informaţie apriori despre numărul şi tipul funcţiilor de apartenenţă pentru 

variabilele de intrare, fiind mai puţin vulnerabilă la presupunerile iniţiale de proiectare. După procesul 

de identificare sistemul poate fi controlat în mod adaptiv direct sau indirect. În articol este luat în 

considerare controlul indirect şi sunt prezentate regulile folosite la actualizarea ponderilor HONN. 

Demonstraţiile riguroase garantează faptul că erorile converg rapid la zero în mod exponenţial sau, cel 

puţin sunt uniform mărginite. În acelaşi timp, stabilitatea este garantată prin faptul că toate semnalele 

din sistemul închis rămân mărginite. Pe durata proceselor de identificare şi de control se presupune că 

centrele şi formele funcţiilor de apartenenţă sunt cunoscute, iar parametri HONN sunt identificaţi, caz în 

care se obţine o variaţie direcţională. Pentru a garanta existenţa legii de reglare se defineşte o nouă 

metodă, numită comutarea parametrilor, care înlocuieşte proiecţia cunoscută. În acest mod este riguros 

demonstrată existenţa legii de control, garantând proprietăţile de stabilitate. 
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