
BULETINUL 
Universităţii Petrol – Gaze din Ploieşti 

Vol. LXII 
No. 4B/2010 55 - 60 Seria Tehnică 

 

Optimizing Vibrations Dynamic Absorber (II) 

Tănase Dinu 

Universitatea Petrol-Gaze din Ploiesti, Bd. Bucuresti 39, Ploiesti  
e-mail: tdinu@mail.upg-ploiesti. ro 

Abstract 

The two papers present a general algorithm for determining the dynamic response of a structure with any 
type of damping, based on the Galerkin method. The elaborated algorithms are transposed into computer 
programmes. The paper presents a new method for determining the parameters of dynamic absorbers of 
vibrations, using a C.R.D. programme.  
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Introduction 

The paper follows the previous article.  

Solution 

If the primary system does not have a dynamic absorber attached, then, the system is a one-
degree-of-freedom, with no damping. The dynamic reaction can be deduced with the help of the 
results of the general theory, where the disturbance force is )cos(30)( ttF ⋅⋅= ω .  

The specific pulsation of the system is 120
50

20000 −⋅== sp , and the general solution is 

))cos()(cos(
5020000

30)(
2

tptt ⋅−⋅
⋅−

= ω
ω

η . The amplitude of the movement of the mass m 

depends on the pulsation of the disturbance force ω.  

Ifω→ p , then these amplitudes grow towards infinite. As it is required for the vibrations to be 
smaller in amplitude than 8 mm, then we must introduce a dynamic absorber with damping to 
the system to answer all the requirements, regardless of the pulsation of the disturbance force. 
According to (14) and (15) we calculate the transmissibility value: 
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µ . The ratio of the specific pulsations n is determined by (19) 

9654,0== µn , and the elastic constant of the dynamic absorber will be 

mNkka /52,1267)1( ⋅=⋅−⋅= µµ .  

The average value of the damping coefficient can be determined with the relation  
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The damping constant of the dynamic absorber ac will be given by the relation  
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In conclusion, the optimal harmonization of the absorber for an amplitude smaller than 8 mm 
corresponds to the following auxiliary parameters: 

Kgma ⋅= 644,3 ; mNk /52,1267 ⋅= ; ac  = 21, 692 
m

sN ⋅ .  

We will study the behavior to stimulation of the new system made of the primary system and 
the auxiliary one with the parameters specified above with the help of the C.R.D. programme. 

The differential equations system (12) with the matrix form (1) has: 
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The specific pulsations of this system with damping devices given by the C.R.D. programmme 
are: 1

1 824,16 −⋅= spa  and 1
2 017,22 −⋅= spa .  Considering 11 −⋅= sω and the time interval  

[0. 10s], with the programme set C.R.D., we can represent in Fig.1 the oscillations of the two 
masses, with regard to the components.  

The result is that the maximum amplitude of the )(1 tx  component is mm⋅6373,2 , much smaller 
than the maximum amplitude required for small angular velocities of the disturbance force.  

By repeating the execution of the C.R.D. programme with the amplitude of the disturbance 
force of 90N, then the same time interval [0, 10s] can be achieved for a maximum oscillation of 
the primary mass with the value of mm⋅91193,7 for 11 −⋅= sω  (Fig.2) very close to the 
maximum of the required oscillation.  

If the specific pulsation of the disturbance force is close to the specific pulsation of the system 
with the damping value 110 −⋅= sω , then, the dynamic answer of the system is represented in 
Fig.3 for the interval [0, 1s] and in Fig.4 for the interval [0, 3s].  
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It is noticeable in these cases that the specific pulsation of the disturbance force is getting close 
to the specific pulsation of the system and the maximum amplitude of the primary mass of 6,34 
has the required value 8 mm.  

As a conclusion, we can state that the optimal parameters determined for the dynamic absorber 
correspond to the necessities for which it was designed.  

By simulating the dimensions of the dynamic absorber with the C.R.D. programme we found 
the following parameters: Kgma ⋅= 4 ; mNk /1200 ⋅= ; ac  msN /20 ⋅⋅= , which are close to 
the parameters determined with the theory presented above.  

The dynamic answer for the dynamic system with these parameters is given in Fig.5 and Fig.6. 
The maximum oscillation of the primary mass is 6,94386 mm. 

The graphic representation for the real dynamic response is rendered using dots.  
The graphic representation for the approximate dynamic response is rendered using a line.     
 

 

The graphic for component 1                                                  The graphic for component 2 

 

 
The maximum value of oscillation in the module is 2,63731 mm.  The maximum value of oscillation in the module is 4,11614mm 

 

Fig. 1. The oscillations of the two masses for n = 2, b=10, nd = 50, F =30N , and 11 −⋅= sω .  

 

 

The graphic for component 1                                                 The graphic for component 2 

 

   
The maximum value of oscillation in the module is 7,91193 mm.  The maximum value of oscillation in the module is 12,34842 mm.  
 

Fig. 2. The oscillations of the two masses for n = 2, b=10, nd = 50, F =90N , and 11 −⋅= sω .  
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The graphic for component 1                                                   The graphic for component 2 

   
The maximum value of oscillation in the module is 6,34022 mm. The maximum value of oscillation in the module is 16,69185 mm.  
 

Fig. 3. The oscillations of the two masses for n = 2, b=1, nd = 50, F =30N , and 116 −⋅= sω .  

 
 

The graphic for component 1                                                   The graphic for component 2 

     
The maximum value of oscillation in the module is 6,34022 mm. The maximum value of oscillation in the module is 16,2228 mm.  

 

Fig.4. The oscillations of the two masses for n = 2, b=3, nd = 50, F =30N , and 116 −⋅= sω .  

 
 
The graphic for component 1                                                   The graphic for component 2 

     
The maximum value of oscillation in the module is 6,94385 mm. The maximum value of oscillation in the module is 16,16938 mm.  
  

Fig.5. The oscillations of the two masses for n = 2, b=1, nd = 50, F =30N , and 116 −⋅= sω .  
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The graphic for component 1                                                  The graphic for component 2 

 

    
The maximum value of oscillation in the module is 6,94385 mm. The maximum value of oscillation in the module is 18,47173 mm.  
  

Fig.6. The oscillations of the two masses for n = 2, b=3, nd = 50, F =30N , and 116 −⋅= sω .  

 

Conclusions 

The absorber can be attached when the specific vibration of the primary system is close to the 
frequency of the disturbing forces. Its efficiency depends on its parameters: mass, elastic 
constant and damping constant. The theoretic methods for studying the efficiency of the passive 
dynamic absorbers are very difficult and require a particularly delicate formal calculation to 
determine the relations between the parameters of the dynamic absorber. Moreover, these 
methods operate with some excessively high approximations for obtaining a simple dependence 
relation between the parameters of the absorber. Considering that the introduction of a dynamic 
absorber in a structure causes the increase in the number of degrees of freedom, then the study 
of the dynamic absorbers can be made with the programme C.R.D., by using the method of the 
differential equations. In this case, after the differential equations for the oscillations of the 
system masses has been written (equations (1)), then we can make the simulation on this 
mathematic model with the programme C.R.D. for various values of the parameters of the 
dynamic absorber: auxiliary masses, damping constants, damping coefficient. We will take into 
consideration the combination for which the dynamic absorber works efficiently in the structure 
where it is attached, that is for which the oscillations of the primary mass are the smallest. The 
programme C.R.D. can determine the specific pulsations with no damping involved, the specific 
pulsation with damping and the dynamic response for each component of the system separately. 
This dynamic response is given both in the transition stage and in the stage when the movement 
is stabilized by the iterative-residual method. Moreover the programme renders in a graphical 
form the harmonic movement of every mass and the theoretical methods do not represent a 
theoretical support of the dynamic response in the transition stage, which is from the priming of 
the machine to the stage where it gets into the stabile movement.  

We presented these types of dynamic absorbers to emphasize on the fact that their designing 
was very demanding even in the simple cases we mentioned. When the dynamic absorber 
becomes more complex (having auxiliary masses attached with springs and other damping 
devices), then the theoretical study of its efficiency is actually impossible. One can make a 
study with the C.R.D. programme by simulating various parameters and noting only the 
combination that gives small amplitudes.  
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Optimizarea absorbitorilor dinamici (II) 

Rezumat 

Aceste două lucrări prezintă algoritmul general al răspunsului dinamic al unei structuri cu amortizare 
oarecare folosind metoda Galerkin. Acest algoritm a fost transpus pe calculator în programul care dă 
răspunsul dinamic (C.R.D.). Lucrarea prezintă o nouă metodă de determinare a parametrilor 
absorbitorilor dinamici de vibraţii, utilizând programul C.R.D.  
 
 
 
  


