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Abstract 
 
In this work, the realization of the dynamic study for the hydraulically driven mechanism is proposed, by 
using the equations formulated by Kane, for the study of the general dynamics of the mechanical systems. 
An original algorithm elaborated on the basis of the mathematical model used for the dynamic study of 
the hydraulically driven mechanisms with rigid elements and the determination of the inertia matrix in 
respect with the centre of mass are presented. 
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Introduction 
 
According to the Kane movement equations, [1], the dynamics of a spatial mechanism made up 
of rigid cinematic elements, is described by the following mathematical model: 
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The elaboration of the mathematical model is realized by using the algorithm made up of the 
following steps:  
o The structural analysis of the mechanism. Based on the cinematic scheme we can determine 

the structure of the mechanism hydraulically driven, classically, according to the 
methodology detailed in [7]. 
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o The settlement of the ramified mechanism. 
 
 
The Settlement of the Replacement Cinematic Chains of the Hydraulic 
Motors 
 
The Substitution Cinematic Chain of the Linear Hydraulic Motor 
 
The linear hydraulic motor with an unilateral bar and with a double effect, or the linear 
hydraulic motor with an unilateral bar and with a simple effect, is substituted by a cinematic 
chain made up of two rigid elements, connected between them by a translation couple of Vth 

class [3]. The linear hydraulic motor with a bilateral bar and with a double effect, , or the linear 
hydraulic motor with a bilateral bar and with a simple effect, , is replaced by a cinematic chain 
made up of two rigid cinematic elements, connected between them by a translation couple of Vth 

class [5]. 

The settlement of the mechanism which is not ramified. The transformation algorithm is 
presented in [7].The determination of the speed and of the acceleration of some points situated 
on the elements of the mechanism is performed. The speed and the acceleration of a point, 
reported to the inertia reference point 0R , are calculated in the following way [1, 7]: 
o the speed: 
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or, using the matrix [ ]W , the relation (8) can be written under the equivalent form: 
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o the acceleration: 
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The determination of the Jacobean for the constraint equations: 
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The determination of the vector for the generalized force: 
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The calculation of the friction force associated to the linear hydraulic motor [5]: 

ftcfpcfvfMHL FFFF ++=                                                           (13) 

The calculation of the viscous friction force between the piston and the cylinder. In this case of 
flowing, through the slot, it is calculated by using the relation [5]: 
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The tangential viscous friction force on the surface unit is calculated by the relation (16), [5], 
and by the substitution of the relation (14) in the relation (16) we get: 
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The surface on which the viscous friction force reacts, has a cylindrical form [7]. Its area is 
equal to (18) below, and the viscous friction force is calculated by using (19): 
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By replacing the relations (17) and (18) in the relation (19) we get the calculation relation:  
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The calculation of the Colombian friction force between the piston and the cylinder: 

pbzDF gpppffpc ∆= πµ 1  ,  egtttfftc pbzdF πµ 2=                            (21-22) 

The friction force associated to the linear hydraulic motor. The following expression of 
the friction force associated to the linear hydraulic motor results: 
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The calculation of the mass features of the cinematic elements from the structure of the 
mechanism. These elements take into consideration the existence of the mineral oil inside the 
hydraulic motor and they allow the consideration of the influence for the mineral oil on the 
dynamics of the mechanism. 
 
 
The Inertia Matrixes Associated to the Bodies of the Extension and Retraction 
Spaces 

 
For a geometrical variety of material volume type, reported to a Cartesian system R of axes, the 
symmetrical matrix is defined by the inertia tensor by: 
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Considering the density as being expressed by a continuous function, the components of the 
inertia matrix calculated, reported to the Cartesian system of axes, the following relations are 
given, [9,10]: 
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Based on the relations (31), (32), …, (36), we can determine the inertia matrixes for the bodies 
associated to the extension and retraction spaces, matrixes that are calculated reported to their 
mass centre. 
 
 
The Inertia Matrix of the Body for the Extension Space, Calculated Reported to 
the Mass Centre 
 
The body is presented in the [8]; we consider the system of axes oriented as it is in the figure 1, 
with the origin placed in the mass centre. The inertia matrix is the following: 
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Its components being calculated by: 
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The Inertia Matrix of the Body Associated to the Retraction Space, Calculated 
Reported to the Mass Centre 
 
The body is presented in the figure 1; we consider the system of axes as being oriented as in the 
figure, having the origin placed in the mass centre. The inertia matrix has the form: 
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Its components being calculated by: 
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Mass Properties of the Equivalent Body 
 
The mass of the equivalent body is equal to the sum: the mass of the body associated to the 
extension volume, the mass of the body associated to the retraction volume and the mass of the 
real body of the hydraulic motor: 

teecuruee qmmmmmm 1,0, +=++= ; curuee mmmm ++= 0,0,0, ; 1,1,1, uruee mmm +=  (57-59) 
 
 
The Weight of the Equivalent Body 
 
It is equal to the sum of the weights: the body associated to the extension volume, the body 
associated to the retraction volume and the real body of the hydraulic motor. The weight of the 
body associated to the extension volume: 
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The weight of the body associated to the retraction volume: 
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The weight of the equivalent body: 
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The Application Point of the Equivalent Weight Vector 
 
Reported to this system of axes we have: 
o the position vector of the weight force for the body  associated to the extension volume: 
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o the position vector of the weight force for the body associated to the retraction volume: 
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o the position vector of the weight force for the real body of the hydraulic motor : 
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Using the vectors calculation relation for the vector of the application point, we can determine 
the resultant of a system of parallel vectors, [7]: 
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Based on the relation (82), knowing the vectors of the weight forces, we can write: 
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The Inertia Matrix of the Equivalent Body, Calculated Reported to the Mass 
Centre 
 
The matrixes are calculated reported to the mass centre of the equivalent body using the Steiner 
theorem, [3]. We are interested in the manner of the distance vectors: ued
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Fig. 1 



Mathematical Model for the Hydraulically Driven Spatial Mechanisms 95

Conclusions 
 
Having the mathematical model we can write in a programming language (preferably 
Matlab/Maple), the program which determines under an analytical or numerical form, the 
friction force associated to the linear hydraulic motor according to the calculation algorithm 
previously presented. In the same time we can write the program which allows the 
determination of the inertia matrix associated to the extension body reported to the mass centre. 

In the same time, we can write in a programming language (Matlab/Maple), a program which 
could be used to determine the inertia matrix associated to the volume of the retraction body. 

We can write the program that can be used to calculate the mass of the equivalent body. In order 
to calculate the inertia matrix of the equivalent body, reported to the mass centre, it is necessary 
to determine the position of this centre. In this aim, we calculate the weight force of the 
equivalent body, whose application point coincides to the mass centre of the equivalent body. In 
this case we can write the program that can be used to determine the weight of the equivalent 
body. 

In the same time, we can write a program that could allow the determination of the inertia 
matrix of the equivalent body.  
 
 
Symbols 
 
mk – the mass of the cinematic element k; 
[q] – the vector of the generalized co-ordinates; 
[λ] – the vector of the Lagrange multiplier; 
[B] – the Jacoben of the system of constraint equations; 
[Q] – the vector of the generalized forces; 
[ω] – the vector of the generalized speeds; 
[Jk] – the inertia matrix associated with the cinematic element k, calculated by reporting it to the mass 
centre; 
[M] – the mass matrix associated to the system; 
[vk] – the partial speed matrix corresonding to the absolute speed of the cinematic element k associated to 
the vector of the generalized speeds; 
[ωk] – the partial matrix of the angular speed associated to the cinematic element k; 
[Sk,0] – the absolute rotary matrix of the own reference point attached to the cinematic element k; 
[Ωk,0] – the antisystemic matrix associated to the co-ordinates of the absolute angular speed vector of the 
cinematic element k; 
[FA,k] – the resultant of the exterior forces that react on the cinematic element k; 
[MA,k] – the exterior couples that react on the cinematic element k; 
Ffν – the viscous friction force between the piston and the cylinder; 
Ffpc – the Colombian friction force between the piston and the cylinder; 
Fftc – the Colombian friction force between the bar and the sealing head; 
∆p – the drop pressure on the slot; 
pi – the pressure of the oil at the entrance in the slot; 
Pe – the pressure of the oil at the exit from the slot; 
µ – the dyhamic viscosity of the oil; 
Dp – the diameter of the piston; 
bp – the width of the piston; 
δ – the thickness of the oil throught the slot; 
µf1 – the Colombian friction coefficient between the piston and the cylinder; 
zp – the number of the piston air sealing; 
bgp – the width of the piston air sealing; 
µf2 – the Colombian friction coefficient between the bar and the head; 
zt - the number of the piston air sealing; 
bgt – the width of the piston air sealing; 
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dt – the diameter of the bar; 
pe – the pressure from the annular chamber of the hydraulic motor; 
CMVr – the mass centre of the body associated to the reaction volume; 
CMve – the mass centre of the body associated to the extension volume; 
CMC – the mass centre of the real body of the hydraulic motor. 
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Model matematic pentru mecanisme spaţiale acţionate hidraulic 
 
Rezumat 
 
În lucrare se propune realizarea studiului dinamic al mecanismelor acţionate hidraulic, prin utlizarea 
ecuaţiilor formulate de Kane, la studiul dinamicii generale a sistemelor mecanice. Se prezintă un 
algoritm original elaborat pe baza modelului matematic utilizat pentru studiul dinamic al mecanismelor 
acţionate hidraulic cu elemente rigide şi determinarea matricii de inerţie în raport cu centrul de masă, 
calculul masei corpului echivalent şi determinarea punctului de aplicaţie a forţei de greutate a corpului 
echivalent. 


