# Fuzzy Logic System for Modeling Functional Characteristic of Hydraulic Generators

Georgeta Claudia Niculae

Universitatea de Petrol și Gaze din Ploiești, Bd. București, nr: 39, Ploiești e-mail: niculae.claudia@upg-ploiesti.ro

# Abstract

Aim of the study is to design a fuzzy logic system used in Matlab for modeling functional characteristic of type centrifugal pump hydraulic generators.

Key words: fuzzy logic, functional characteristic, centrifugal pump.

# **The Mathematical Model**

Hydraulic machinery, hydraulic generators are used to transport fluid by transforming kinetic mechanics energy provided by a motor on hydraulic power. Functional characteristics (figure 1) of the hydraulic generator is correlation between functional parameters pressure p (hydraulic load H), flow Q and velocity  $\omega$ .



Fig. 1. Functional characteristics of the hydraulic generator.

Experimental measurements are performed to determine the characteristic functional bench shown in figure 2. The stand is equipped with a multi-storey centrifugal pump that circulated water.



**Fig. 2.** The stand is equipped with a multi-storey centrifugal pump. *Mcc* - DC electric motor, *PC* - centrifugal pump multi-storey, *R* - reservoir, *D* - diaphragm for measuring flow, *n* - tachometer.

Algorithm to determine the hydraulic load is:

$$H_{x} = \frac{p_{TX} - p_{dX}}{\rho g} \tag{1}$$

where: *H<sub>x</sub>* is hydraulic load, [mcl];

- $p_{rx}$  repression pressure centrifugal pump, [Pa];
- *p*<sub>ax</sub> centrifugal pump inlet pressure, [Pa];
- $\rho$  water density [kg/m<sup>3</sup>];
- g gravitational acceleration [m/s<sup>2</sup>].

The  $Q_x$  flow, suction pressures and discharge  $p_{\alpha x}$ ,  $p_{rx}$  and nx speed centrifugal pump are measured on the stand.

Since the functionality of the centrifugal pump is a graphic dependent  $H_x = f(Q_x)$  can be represented approximately as analytical, we can design a fuzzy logic system in which flow  $Q_x$  and velocity  $\omega_x$  system are inputs and output load is  $H_x$  so:

$$\left| \tilde{H}_x - f(Q_x) \right| \to 0 \tag{2}$$

# Fuzzy Logic System for Modeling Feature H<sub>x</sub>=f(Q<sub>x</sub>) Centrifugal Pump

Fuzzy logic system components used for modeling the functional characteristic  $H_x = f(Q_x)$  of the centrifugal pump are:

- a. fuzzy sets entry, noted  $MFQ_k$  (fuzzy sets flow) and  $MF\omega_k$  (angular velocity of fuzzy sets);
- b. fuzzy sets output, noted  $MFH_k$  (hydraulic load of fuzzy sets);
- c. fuzzy rule base (which indicates that between fuzzy sets of input and output fuzzy relationship exists). It contains  $R_k$  rules form:

if Q is  $MFQ_k$  and  $\omega_x$  is  $MF\omega_k$  then H is  $MFH_k$ .

By applying *fuzzyfication*, *inference* (determining *fuzzy rules*) and *defuzzyfication operations* is processed obtain inputs and output fuzzy logic system.

#### **Fuzzyfication operations**

This operation transforms input into singleton fuzzy sets. Fuzzy sets input resulting from singleton fuzzyfication defined by membership functions of the form (figure 3).

$$\mu_{MFSQ_k}(Q) = \begin{cases} 1, Q = Q_0\\ 0, Q \neq Q_0 \end{cases}$$
(3)

$$\mu_{MFS\omega_k}(\omega) = \begin{cases} 1, \omega = \omega_0 \\ 0, \omega \neq \omega_0 \end{cases}$$
(4)



Fig. 3. Fuzzy membership function of input crowds

Range of variation of input variables are intervals of real numbers, for example:  $Q = [0, 0.01131] m^3/s$  and  $\omega = [180, 188.4] rad/s$ . Is found experimentally that a sufficiently good approximation, while maintaining the complexity of fuzzy logic system to very low limits, coverage is obtained for a *Q*-*H* characteristic by few fuzzy areas. This implies that the input variables are defined, for exemple, by nine triangular fuzzy sets of type *MFQ1*, *MFQ2*,...,*MFQ*9 (figure 4) for a flow corresponding fuzzy areas 1... 9 and *MF* $\omega$ 1, *MF* $\omega$ 2,...,*MF* $\omega$ 9 the velocity of a fuzzy area 1 to 9. This nine fuzzy sets form a fuzzy partition.



Fig. 4. Fuzzy Sets input variable flow over Q

#### **Defuzzyfication operation**

Here is selected a value into fuzzy sets output resulting from inference, noted *MFO*, as the characteristic value of fuzzy crowd-out, for example: H = [7, 34]mc!

Hydraulic generator cover feature in the nine areas requires coverage universe fuzzy variable *H* by nine fuzzy sets of triangular shaped *MFH1, MFH2, ..., MFH9* (figure 5).



Fig. 5. Fuzzy Sets over variable output hydraulic load *H*.

Operation selection output value, which is the result fuzzy defuzzyfication MFH' of fuzzy inference, is **central peaks**. This operation means the weighted average of the maximum of each partial conclusions  $MFH'_{k'}$ , where the weights are the maximum values of membership degrees of each  $MFH'_{k'}$ .

#### Rule base fuzzy logic system

Rule base fuzzy logic system includes all rules that establish relationships between fuzzy sets fuzzy input and fuzzy output. As a result, it looks fuzzy output value  $MFH_k$ , (k = 1, ..., 9) corresponding to each input fuzzy values  $MFQ_j$  and  $MF\omega_j$  (j = 1, ..., 9). There will be nine fuzzy rules in rule base system so that each fuzzy rule defines a fuzzy in the nine areas (fig. 6).



Fig. 6. The first six fuzzy rules

# Conclusions

This paper presents the methodology of building a fuzzy logic system in Matlab. For items that are presented which defines a fuzzy logic system: input and output variables of fuzzy logic system, fuzzy sets of input and output, based on fuzzy rules, and operations involved in the operation of the fuzzy logic system : fuzzification, inference (conclusions partial aggregation) defuzzification.

# References

- 1. Pană, I. Acționări hidraulice. Editura Universității din Ploiești, Ploiești, 2003.
- 2. Jang, R., MATLAB Fuzzy Toolbox The MathWorks, Inc. Revision: 1.12 Date: 2000, 15.

- 3. Preitl, Şt., Precup, E., Introducing the fuzzy management processes, Editura Tehnicã, București, 1997.
- 4. MATLAB SIMULINK 6.5. Users Manual. Mathworks Inc. 2005.
- 5. www.mathworks.com/products/fuzzylogic/.

# Sistemul cu logica fuzzy pentru modelarea caracteristicii functionale a generatoarelor hidraulice

### Rezumat

Scopul lucrării este de a proiecta un sistem cu logica fuzzy în Matlab folosit pentru modelarea ulterioară a caracteristicii funcționale a generatoarelor hidraulice de tip pompă centrifugă. Lucrarea prezintă metodologia de construire a unui sistem cu logică fuzzy in Matlab. Pentru aceasta sunt prezentate elementele prin care se defineste un sistem cu logică fuzzy: variabile de intrare si de iesire ale sistemului cu logică fuzzy; mulțimi fuzzy de intrare si de iesire; bază de reguli fuzzy, si a operațiilor implicate de funcționarea sistemului cu logică fuzzy: fuzzificare, inferență (agregare a concluziilor partiale), defuzzificare.