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Abstract 

The paper presents a unitary method for computing the forced response in the time domain of a SISO 
time-invariant linear continuous system of input-output type, described by a differential equation. The 
proposed procedure uses the superposition principle in order to replace the primary differential equation 
with a suitable equivalent model of two equations, called secondary model, which reflects an indirect 
input-output transfer by means of a new internal variable. Since the secondary model does not contain 
derivatives of the input variable, we can determine the system response to any non-differentiable original 
input function, such as the unit step function. Moreover, all the initial conditions are equal to zero in our 
proposed procedure.  

Key words: input-output model, primary model, secondary model, non-differentiable input functions 

Introduction 

Usually, the time domain analysis of the input-output linear continuous systems is done under 
the assumption that the system was at steady state until the initial time 00 =t , with all the input 

and output variables equal to zero (original type variables). The system response )(ty  to a 
given original input )(tu  is a forced response.  

Input-Output Model of Continuous Systems  

The mathematical model of a SISO linear continuous and time-invariant system of nth order, has 
the following primary form: 
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where ia  and ib  are real constants and 0≠na . 

Conventionally, the input variable u  and the output variable y  represent variations of the real 
system physical variables compared to their initial values. As a result, if the system is at steady 
state before the initial time 00 =t , then both system variables are zero for 0<t . 
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If nr ≤ , then the system is called proper (strictly proper for nr < , and semi-proper for nr = ). 
If nr > , the system is improper. 

An improper system doesn’t satisfy the causality principle. All physical systems are proper 
since they satisfy this principle. 

A strictly proper system clearly satisfies the causality principle, since the input-output transfer is 
strictly delayed.  

A semi-proper system satisfies the causality principle just on the line, since its output has a 
component which follows instantaneously any input variation.  

Canceling all derivatives of the input and output variables, from the dynamic model (1) we 

obtain the stationary model Kuy = , with the static gain 
0

0
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b

K = .       

If 00 ≠a  and 00 ≠b , then the slope of the static characteristic is finite and nonzero;  such a 
system is of proportional type. Most of the physical systems are of proportional type. The step 
response of a proportional and stable system settles to a finite and nonzero final value. 

If 00 =a  and 00 ≠b , then the system is of integral type. An integral system can be at steady 

state only if the input u  is equal to zero. A purely integral system has the model ubya 01 =& , 
which is equivalent to  
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The step response of a purely integral system is a ramp response (with constant slope). 
Generally, the step response of an integral stable system approaches asymptotically an inclined 
straight line, being a delayed ramp response. An integral system is a “persistent” system, 
because the output y  doesn’t settle if the input u  is nonzero.                       

If 00 ≠a  and 00 =b , then the system is of derivative type. A derivative system has the 

stationary model 0=y . Because the value of the output variable y  is zero at steady state, the 
step response of a derivative stable system approaches zero. Due to the impulse form of the step 
response (which starts from zero and goes towards zero), a derivative system is a ”lead” system. 

The improper model  
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describes a purely derivative system, and the model 
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describes a semi-proper derivative system. 

According to the superposition principle, the primary model (1) is equivalent to the following 
secondary model: 
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By the superposition principle, the effect of a sum of causes is equal to the sum of the effects of 
the each cause, and, moreover, a multiplied/differentiated cause yields a 
multiplied/differentiated effect. The output y  from the primary model (1) is the effect of a 
weighted sum of 1+r  derivatives of the cause u , while the output y  from the secondary 
model (2) is the weighted sum of 1+r  derivatives of the effect w  of the cause u . On the other 
hand, we can check that formally equation (1) becomes identity by replacing the variables u  
and y  from equations (2) in equation (1). 

For the secondary model, the input-output transfer is performed indirectly, by the aid of the 
variable w . 

Because the secondary model doesn’t contain derivatives of the input u , we can also use this 
model for non-differentiable or discontinuous input variables. 

Continuous System Response Computation 

Usually, the secondary model (2) is used for computation of the analytical response of a linear 
system to a given differentiable or even non-differentiable original input. 

According to the secondary model, the system response for 0≥t  to any input original analytical 
function, )(1)( ttfu ⋅= , is given by the relation 
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where )(tw  is the solution of the differential equation 
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for null initial conditions: 

0)0()0()0( )1( ==== +++ −nwww L&  . (5)

The n  null initial conditions express the continuity of the functions )(tw , )(tw′ , ... , )()1( tw n−  
at the initial time 0=t . Indeed, since the derivative of a function is equal to the function 
changing rate, a step variation at 0=t  of the function )()( tw i , 10 −≤≤ ni , implies an infinite 
variation of its derivative )()1( tw i+ , and this result contradicts equation (4). 

 The condition that equation (4) is satisfied at += 0t  yields 
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From equation (3) and the initial conditions (5) and (6), it follows that the response )(ty  of the 
system (1) satisfies the following initial conditions: 
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The initial conditions theorem. The response of the continuous linear system (1), with 0≠na  

and 0≠rb , to any finite original input function has at least rn−  null initial conditions. 

For input original functions which are discontinuous in origin, with the form )(1)( ttfu ⋅= , 
0)0( ≠+f , the system response is characterized by exactly rn−  null initial conditions. In 

particularly, for a unit step input, )(1 tu = , the first non-zero initial condition of the response is 

0)0()( ≠=+−
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The system response is characterized by at least 1+− rn  null initial conditions for continuous 
original input functions, and at least 2+− rn  null initial conditions for differentiable original 
input functions.  

The response to a unit step input, 
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is called indicial response function or unit step response function, and the response to a Dirac 
impulse input, )(0 tu δ= , is called weighting response function or Dirac impulse response 
function. Next, we denote the indicial function by )(th , and the weighting function by )(tg . 
Both of these functions are original functions (equal to zero for 0<t ). 

For a unit step input )(1 tu = , the solution of the differential equation (4), with 00 ≠a , can be 
expressed as  
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where nsss ,,, 21 L are the roots of the characteristic equation  
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and nCCC ,,, 21 L  are real or complex constants ( iC  is real/complex when is  is 
real/complex). 

If 21 ss = , then the sum  tsts CC 21 ee 21 +  has to be replaced by tsCtC 1e)( 21 + . If the roots 1s  

and 2s  are complex-conjugate, namely jbas ±=2,1 , then the sum tsts CC 21 ee 21 + , with 1C  

and 2C  complex-conjugate constants, may be replaced with the expression 

)cossin(e 21 btCbtCat + , with 1C  and 2C  real constants. The constants nCCC ,,, 21 L  are 
computed from the null initial conditions (5).  

Taking into account relation (3), in the case when the characteristic equation (8) has distinct 
roots, the unit step response )(th  for 0≥t  has the form 
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where nDDD ,,, 21 L  are real or complex constants ( iD  is real/complex when is  is 

real/complex). If the roots 1s  and 2s  are complex-conjugate, jbas ±=2,1 , then the sum 

tsts DD 21 ee 21 +  can be expressed as )cossin(e 21 btEbtEat + , where 1E  and 2E  are real 

constants. From the unit step response )(th , we see that this is bounded when all the 
characteristic equation roots  nsss ,,, 21 L  have their real part negative. This result is valid 
also when the characteristic equation has multiple roots. 

By the superposition principle, it follows that between the unit step response )(th  and the Dirac 
impulse response )(tg  there are the following relations: 
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According to the last relation, the weighting function )(tg  is equal to the distributional 
derivative (in a generalized mode) of the indicial function )(th . This means that if )(th  is 
discontinuous at 0=t , then )(tg  is a tempered distribution given by 

)()0()()( 0 ththtg δ++= & , (10)

where )(th&  is the classical derivative (assumed to be 0 at 0=t ).  

The weighting function )(tg  has a significant role in the theoretical study of linear dynamic 
systems, due to the fact that it allows a relatively brief expression of the response to an original 
input function.  

The convolution theorem.  If the weighting function )(tg  of a continuous linear system is 
given, then the response )(ty  to a given original input )(tu  can be expressed by the 
convolution relation: 
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The convolution relation (11) is a direct consequence of the superposition principle. Indeed, 
since the Dirac impulse input )(0 tδ  yields the response )(tg , then to the input )(tu , which can 

be written as ∫ −
t

ut
0 0 )d()( τττδ , yields the response ∫ −

t
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Remarks. 

10. With regard to the unit step response )(th  of the system (1), we make the following 
observations. 

a) for nr =  (the case of a semi-proper system, which satisfy just on the line the causality 
principle ), the unit step response is discontinuous at 0=t , because 

0/)0( ≠=+ nn abh ;  

b) for 1−= nr  ( 0=nb , 01 ≠−nb ), the unit step response is continuous, but non-differentiable 
at 0=t , because 
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0)0( =+h ,  0/)0( 1 ≠= −+ nn abh& ;  

c) for 2−= nr  ( 01 == −nn bb , 02 ≠−nb ), the unit step response is continuous and simply 
differentiable at 0=t  (tangent to the t - axis), because 

0)0()0( == ++ hh & ,   0/)0( 2 ≠= −+ nn abh&& .  

20. For a serial, parallel, or feedback connected system (fig. 1, 2, 3), the response to a given 
original input is usually determined using the model of the entire system, obtained from the sub-
system models by eliminating all intermediary variables (of v  variable to the serial connection, 
of 1v and 2v  variables to the parallel connection, of e  and v  variables to the feedback 
connection). 

 
Fig. 1.  Serial connection 

 
Fig. 2. Parallel connection 

 
Fig. 3. Feedback connection 

 

For open loop connections (serial or parallel), the response can be also determined using a step 
by step procedure; that is, to calculate successively the response of each sub-system to the 
already computed input. 

Conclusions 

The presented method allows computing the response in the time domain to any continuous or 
discontinuous original input function for an input-output linear continuous system. Using the 
secondary model (2), three advantages are accomplished: (a) a relevant simplification of the 
calculation, by choosing all the initial conditions equal to zero; (b) an extension of the proposed 
computing method to non-differentiable or even discontinuous input functions, by canceling all 
the input derivatives of the model; (c) a more rational arrangement, in two steps, of the 
computing operations.   
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Metodă de calcul în domeniul timpului a răspunsului sistemelor 
liniare continue de tip intrare-ieşire 

Rezumat 

In lucrare este prezentată o metodă unitară de calcul în domeniul timpului a răspunsului sistemelor 
liniare continue monovariabile şi invariante, descrise prin ecuaţii diferenţiale de tip intrare-ieşire. Ideea 
principală constă în utilizarea principiului superpoziţiei pentru înlocuirea ecuaţiei primare cu un model 
echivalent de două ecuaţii, care realizează un transfer indirect intrare-ieşire, prin intermediul unei 
variabile interne. Deoarece modelul echivalent nu conţine derivate ale variabilei de intrare, metoda 
poate fi aplicată în calculul răspunsului la intrări nederivabile sau chiar discontinue, cum este intrarea 
de tip treaptă. In plus, metoda propusă beneficiază de avantajul considerării tuturor condiţiilor iniţiale 
nule. 

  

 


