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Abstract 

In this paper some problems of robot task optimization based on hybrid genetic algorithm are presented. 
The main optimization criteria are the total travel time, the avoidance of singular configurations, the path 
smoothness, the collision avoidance, as well as the joint angles limits. The optimization problem is solved 
through a hybrid method that combines a genetic algorithm, a quasi-Newton algorithm and a constraints 
handling method, using a multi-objective function and various constraints. The feasibility of the proposed 
algorithm is verified in three applications of the robots used in design or manufacturing procedures.  
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Introduction 

The productivity of a given manipulator used into a workcell, mainly depends on the cycle time 
of the end-effector. The cycle time is affected of many parameters, such as the placement of the 
robot base relative to the task [1, 2], the maximum velocities and accelerations of the actuators, 
the configurations of the robot on the path that obtains a collision free movement, etc. Several 
methods have been used in order to optimize different parameters of robot with respect to the 
task, considering various criteria [3, 4, 5, 6]. 

In the present paper a hybrid optimization method is developed to solve some robot tasks. The 
optimized performance index includes the positioning accuracy, the travel time, the collision 
avoidance, as well as the avoidance of singular configurations. Furthermore the smoothness of 
the path and the normal distribution of the intermediate poses are taken into account. The 
developed method is demonstrated to six, two or five degrees of freedom manipulators, in some 
numerical examples, where different tasks are involved. 

Mathematical Formulation 

In the present paper the manipulator is considered as an open space chain with revolute joints. A 
reference frame Pi attached at each link i is considered. The relative position between two 
successive frames is described using the 4x4 homogeneous transformation matrices and the 
Denavit-Hartenberg parameters [7].  

For the task points it is very important to avoid the singular configurations of the robot. This can 
be assured by the maximization of the robot manipulability [8]. Also the cycle time of the robot 
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must be minimized to improve the productivity of the robot. Other criteria take into account the 
collision avoidance, the limits of joint angles etc. 

Therefore, it could be formulated as an optimization problem, where the objective function (F) 
takes into account the deviations between the prescribed and the calculated end-effector poses 
(F1), the distance between the robot parts and the obstacles (F2) for collision avoidance, the total 
travel time among all poses successively (F3), the normal distribution of travel time for all 
intermediate motions (F4) and the manipulability measure wk for the “n” poses (F5): 
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where , ,k k kDx Dy Dz  are the coordinate deviations of pose “k” between initial interpolated path 
and the calculated one, min( )−i eP P  is the minimum distance between robot part “i” and obstacle 
“e”, PFV is a Penalty Function Value activated when the minimum distance is lower than the 
collision limit, tk is the travel time between poses k and k+1 and taver is the average travel time 
for the total path. The weighting factors α, β, γ and δ are used in order to scale the contribution 
of the corresponding terms in the objective function value. The minimization of the objective 
function determines the optimum values of the unknown parameters. During the optimization 
procedure the imposed constraints regarding the unknown variables are described by: 

 min maxx < < x
l l l

x ,  l =1,2,…m (2)

where m is the number of the variables and minlx  and maxlx  are the lower and upper limits of the 
variable l . These constraints take into account the limits of the joint variables imposed through 
the robot design and the geometry of the robot workcell. 

Proposed Algorithm 

The optimization problem is solved with a hybrid method that combines a Constraints Handling 
Method (CHM), a Genetic Algorithm (GA) and a Quasi-Newton Algorithm (QNA). The flow 
chart of the proposed algorithm is illustrated in Fig. 1. The input data are the joints type and 
number, the variables bounds and the algorithm parameters. In these parameters are included the 
initial parameters of the GA such as the population size, the crossover rate, the mutation rate, 
etc. and the number of the GA and QNA loops. Using the equation (1) the fitness function is 
defined, which is used in all steps of the algorithm. 

The Constraints Handling Method reduces the variables bounds about the optimum value of 
each variable regarding the previous step solution, using a user-defined percentage, in order to 
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accelerate the optimum search of GA and QNA that follow. In any case the global limits of each 
variable (Equation 2) are preserved in order to work in acceptable range of joint angles.  

During the genetic algorithm, starting populations are randomly generated to set variables 
values, which are used to calculate the fitness function value. Genetic algorithm [9] uses 
selection, elitism, crossover and mutation procedures to create new generations. The new 
generations converges towards a minimum that is not necessarily the global one. After some 
repetitions when the maximum generations’ number is achieved, the variables values 
corresponding to the minimum fitness function value are selected as the optimum variables 
values of the genetic algorithm. 

The optimum GA variables values are inserted in the QNA [10] as an initial variables vector 
guess. The quasi-Newton algorithm modifies the values of this vector using a finite-difference 
gradient method until a maximum iterations number or a local minimum is reached. Through 
this ‘hill climbing’ method a new fitness function value is obtained. The loop of QNA is applied 
several predefined times, including the repetition of GA loop, in order to locate several local 
minimums using the GA and approach the global one using the QNA loop. When the maximum 
loops number of QNA is achieved, the variables values corresponding to the minimum fitness 
function value are selected as the optimum QNA variables values. The end of the loops is 
achieved when the quality of the objective function reaches a predefined limit or a predefined 
amount of steps.  

Especially in the case where the proposed methodology is applied to the path planning 
optimization, an initial step is introduced (see Fig.1). This initial step is the interpolation of “n” 
intermediate configurations between the initial configuration and the final one. This not 
optimized and not necessarily free of collisions path is used as the current path for the next 
evolutionary steps of the algorithm. Each step of the evolution procedure (s’) uses a 
combination of CHM, GA and QNA for each intermediate configuration (n’) of the 
manipulator. When all the intermediate poses of the path are calculated (n’=n), the obtained 

 

 
 

Fig. 1. Flowchart diagram of the developed algorithm 
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path is defined as the current one and the next evolution step is activated. The evolution of this 
step uses as current path the new obtained. 

Applications 

The introduced methodology is applied on several manipulators, in three cases. The first case is 
the determination of robot design parameters, as well as the robot base placement of a spatial 
RR manipulator [1, 11, 12]. Other application is the base placement and the configurations 
determination of a 5-DOF robot, taking into account only the positioning accuracy [1, 3]. 
Furthermore, the optimization method is applied on a 6-DOF manipulator for the optimum 
collision free path planning involving additionally the manipulability measure and the travel 
time of the end-effector [1,13]. 

Geometric design of a RR spatial robot 

In the present application the geometric design parameters, the base placement and the joint 
angles of a 2-DOF spatial robot with 2 revolute joints (RR) are determined, when some end-
effector poses are prescribed. The magnitudes to be determined are the base placement with 
respect to a reference system, the geometry of the two parts, as well as the geometry and the 
fastening angle of the tool to the second part. The variables that describe the problem are the 
Denavit-Hartenberg parameters θi, αi, ai and di (i=0,1,2), regarding the base placement and the 
1st and 2nd link, as well as the parameters θ3 and d3 for the tool placement. For each prescribed 
tool pose, different joint angles values of θ1 and θ2 are used. Thus for one prescribed tool pose 
there are 14 unknown parameters, for two prescribed tool poses the unknown parameters 
become 16 and for three prescribed tool poses 18. 

The input data used for the algorithm are the variables bounds, the end-effector poses (Fig. 2) 
and the algorithm parameters (Table 1). The initial applied variables limits are: 0<θi<360o 
(i=0,1,2,3), 0<αi<360o (i=0,1,2), 0<a0<1000, 0<ai<100 (i=1,2), 0<d0<1000 and 0<di<100 
(i=1,2,3). The optimization index in this basic approach includes only the positioning accuracy 
(F1), which means that the other parts of equation (1) have no contribution (α=β=γ=δ=0). 

Three numerical applications corresponding to one, two and three target points are presented. 

 

3
S pr 3

0.7645 0.6408 0.0689 43.2729
0.4770 0.4907 0.7291 16.1409A 0.4334 0.5903 0.6809 88.6821

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
− −= −

3
S pr 2

0.1439 0.9289 0.3410 72.9645
0.9894 0.1398 0.0365 42.7749A 0.0137 0.3427 0.9393 113.3997

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−= − −

3
S pr1

0.6562 0.1129 0.7460 162.0367
0.2188 0.9747 0.0449 82.1840A 0.7221 0.1927 0.6643 48.7429

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
− −= − −

Fig. 2. Prescribed end-effector poses 
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The three prescribed poses of the tool frame (T1, T2, T3) with respect to a fixed Cartesian 
coordinate system PS are graphically presented in Fig. 2. Using these poses the matrices 

3
S pr kA (k=1,2,3) of the prescribed end-effector poses are evaluated (right part of Fig. 2). 

In order to make obvious the accuracy advantage of the proposed method, four different 
algorithms were tested in each numerical example. The first one uses only GA, the second 
combines the GA with the CHM, the third one uses a combination of GA with the QNA and the 
fourth is the proposed one. The proposed method is tested using two approaches of finalizing 
the algorithm, based on the objective function value (1) or the computational time (2). The 
parameters involved in all tests, mainly in GA procedure, are the same and selected as 
optimums through many applied tests: population of individuals=50, cross probability=70% and 
mutation probability=8%. All the other algorithm parameters involved in the problem are 
different in each case and are presented in Table 1. The loops number of GA, QNA and CHM 
are selected in a way that the total generations number in four tests are equal, in order to be 
comparable. 

Fig. 3 illustrates the value of the fitness function in logarithmic scale versus the generations’ 
number of the first three tested methods (Table 1) and of the proposed (1) one based on the 
fitness function criterion, when three poses are prescribed. 

As shown in this figure, the performance of the proposed algorithm is substantially better than 
that of the three other methods during the whole procedure both in accuracy and computational 
time. The obtained value of the fitness function illustrates clearly the advantage of the proposed 
algorithm. The optimum variables values obtained with the proposed algorithm (1), taking into 
account the fitness function criterion, are presented in Table 2. In each column are inserted the 
obtained variables values for the corresponding numerical example, according the base 
positioning, the geometry of each link as well as the configuration of each prescribed pose. 

The comparison between the elements of the matrices 3
S r iA  and the corresponding elements of 

the prescribed ones 3
S pr iA  shows that the maximum positional deviation is lower than 0.0008 

mm in the three numerical examples. The maximum deviation of orientations is lower than 

Table 1. Four methods parameters and the corresponding results 
Parameters Results 

Number of loops Exa- 
mple 

Pre-
scribed 

tool poses 
Algorithm GAs 

(L1) 
QNAs
(L2) 

CHMs
(L3) 

Reduction of 
variables 

range 

Computatio
nal time 

Fitness 
value 

Only GA 2.50E+05 - - - 0:06:52 6.36E+00
GA and CHM 10,000 - 24 25% 0:07:48 3.36E-01
GA and QNA 500 500 - - 0:10:08 1.80E-06
Proposed (1) 100 500 4 85% 0:13:04 1.20E-09

1st  One 

Proposed (2) 10 10 1 85% 0:00:03 4.73E-06
Only GA 5.00E+05 - - - 0:18:06 1.42E+02

GA and CHM 20,000 - 24 25% 0:18:15 3.70E+00
GA and QNA 500 1,000 - - 0:34:31 6.00E-02
Proposed (1) 100 500 9 65% 0:36:13 4.33E-06

2nd Two 

Proposed (2) 100 100 4 65% 0:02:48 2.66E-02
Only GA 1.00E+06 - - - 0:41:53 3.77E+02

GA and CHM 40,000 - 24 25% 0:42:18 1.95E+01
GA and QNA 500 2,000 - - 1:48:35 5.60E-01
Proposed (1) 100 500 19 30% 2:44:29 4.22E-03

3rd Three 

Proposed (2) 100 200 9 55% 0:22:06 1.20E-01
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Table 2. Optimum values of the variables of RR robot 

Results of the examples Solutions Variables 1st 2nd 3rd 
1 θ0 (o) 0.0000 11.4268 36.8875
2 α0 (o) 237.6337 295.7161 50.0390
3 a0 (mm) 95.7807 63.8321 37.9261

Base 
position 

4 d0 (mm) 69.1681 59.8139 6.5254
5 α1 (o) 80.8300 135.2362 215.5565
6 a1 (mm) 43.8419 40.8134 94.20071st part 

geometry 7 d1 (mm) 65.7063 48.9870 44.3800
8 α2 (o) 94.5122 83.0846 246.4630
9 a2 (mm) 4.0268 34.8337 40.02342nd part 

geometry 10 d2 (mm) 55.8065 10.4731 5.0121
11 θ3 (o) 140.4193 43.4457 45.43013rd part 

geometry 12 d3 (mm) 5.4104 65.4491 27.7802
13 θ1 (o) 26.7873 23.4496 5.23111st robot 

configuration 14 θ2 (o) 114.3732 64.9991 323.4674
15 θ1 (o) - 74.9070 36.30002nd robot 

configuration 16 θ2 (o) - 228.3855 222.6390
17 θ1 (o) - - 67.19113rd robot 

configuration 18 θ2 (o) - - 176.7161
 

0.0009 rad (0.052 degrees) in first and second example, which is insignificant value, and lower 
than 0.0318 rad (1.822 degrees), which is acceptable value. 

The second test of the proposed algorithm is used to obtain an acceptable fitness function value, 
with criterion the lower computational time. It is observed that the proposed algorithm leads 
much faster to a lower value of the fitness function in comparison with the other three methods. 

 

 

Fig. 3. The minimum objective function value for three prescribed end-effector poses 
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Robot base placement of a 5-DOF manipulator 

The introduced methodology is applied on a manipulator with five revolute joints (Fig. 4) used 
in manufacturing processes for the determination of the optimum base placement, when an 
amount of end-effector poses are prescribed. In the Cartesian space, the manipulator has five 
degrees of freedom. Three of them are defined from the coordinates x, y, z of the end-effector 
with respect to the coordinate system of the manipulator base (P0). The other two are the 
orientation angles α and β of the end-effector (α=π/2+θ2+θ3+θ4 and β=θ5). The optimization 
problem is focused on the determination of the base placement and the joint angles values for 
the “n” prescribed end-effector poses. These magnitudes are described by the D-H parameters 
θ0, α0, a0 and d0 for the base placement and by the joint angles variables θi (i=1,…,5) for each 
prescribed tool pose. Joint angles θi (i=1,…,5) have a different value for each prescribed tool 
pose, while all other 4 parameters are constant. Thus for one prescribed tool pose there are 8 
unknown parameters and for two prescribed tool poses the number of the parameters becomes 
12. 

The input data used for the algorithm are the links dimensions, the variables bounds [3] and the 
end-effector poses (see Fig. 4). The optimization criterion is only the positioning accuracy of 
the end-effector (weighting factors α=β=γ=δ=0). 

Four numerical applications corresponding to one, two, three and five target points are tested. 
The five prescribed poses (Τ1,…,Τ5) of the tool frame are graphically represented in Fig. 4. In 
table of this figure are given the coordinates (x, y, z) of the origin and the orientation angles (α 
and β) of the tool frame with respect to the fixed Cartesian coordinate system PS, for these four 
applied cases. For each numerical application the acceptable level of fitness value is considered 
lower than 10-3 in the optimization problem solving. 

The algorithm parameters involved in all tests are the same and selected as optimums for this 
problem, through many applied tests. All the other algorithm parameters such as the number of 
GAs, QNAs and CHMs with the respective reduction percentage of variables bounds are 
different in each numerical example (see Table 3). 

 

 
Fig. 4.  Prescribed values of the end-effector poses 
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The algorithm parameters, the obtained computational time and the corresponding fitness 
function value for the four numerical examples are inserted in Table 3. Fig. 5 illustrates the 
value of the fitness function in logarithmic scale versus the generations number of the four 
examples. For the numerical examples of one, two and three prescribed poses the algorithm 
converges to a lower value of fitness function in a quite short time. The solution of the fourth 
example corresponding to five prescribed poses reaches the prescribed value with a higher 
computational time. The optimum variables values deal to 0.0014 mm maximum positional 
deviation and 0.0223 rad (1.28 degrees) maximum deviation of orientations. 

Path planning of a 6-DOF manipulator 

The third application of the proposed algorithm is the optimization of collision free path, 
between an initial and a final robot configuration, using an amount of intermediate calculated 
configurations [13]. The manipulator in this case is known and already placed. The variables 
that describe the optimization problem are the joint angles θi (i=1,..,6) for the “n” intermediate 
poses. In a case of two intermediate poses the calculated variables are 12, for four intermediate 
poses the calculated variables are 24, and so on. 

The input data for the algorithm are the links dimensions (Fig.6), the joint angles variables and 
their initial bounds (Table 4), the maximum allowed joint rotational speed and the prescribed 
robot configurations. Furthermore, the amount of intermediate calculated configurations, as well 
as the maximum allowed steps of evolution is parameter of the algorithm too. The graphical 
representations of initial and final robot configurations, as well as the initial interpolated path 
with the collision of robot parts and obstacles are presented in Fig. 6. 

The representations in this figure are solid models in order to be comprehensible and clearly 
shown. The data used internal the proposed algorithm are only the point clouds of parts and 
obstacles. The point clouds are generated by means of a developed algorithm that uses the 3D 
graphical models to apply points on the surfaces of each item. These point clouds are the data 
for a collision detection procedure, applied during the path evaluation by means of the objective 

 

 

Fig. 5.  The minimum objective function value versus generations number 

Table 3. Algorithm parameters and the corresponding results 
Parameters Results 

Number of loops Exa- 
mple 

Prescribed 
tool poses 

GAs (S1) QNAs (S2) CHMs (S3)
Reduction of 

variables range
Computational 

time 
Fitness 
value 

1 1 – T1 10 30 4 85% 0:00:04 1.44E-05
2 2 – T1,T2 10 30 4 85% 0:00:20 6.10E-05
3 3 – T1,T2,T3 30 100 4 85% 0:01:12 5.80E-04
4 5 – T1,…,T5 30 100 14 30% 0:04:00 7.00E-04
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function. Only the results of the algorithm are presented using 3D models. Many numerical 
applications were conducted using the proposed method, trying several different data according 
the prescribed poses, the intermediate poses amount, the objective function forms, the weighting 
factors of objective function and so on. 

In the frame of this application the presented results are based on a case of two prescribed poses 
for a chair frame welding (see Fig. 6), using standard weighting factors as results of many try 
and error approaches and the objective function form as presented in equation (1). The results 
with respect to the amount of intermediate calculated configurations are presented in Table 5. 
The efficiency of the proposed method is composed by the stable and high values of the 
manipulability measure for all tests, by the acceptable computational time for an off-line 
optimization method and by the minimum normal distribution of the travel time deviations. The 
increase of travel time for more intermediate calculated poses is due to the fact that the 
intermediate movements are linear and much more difficult to be optimized using the same 
parameters. 

The parameters involved in all tests, mainly in GA procedure, are the same and selected as 

 

 
Fig. 6 6-DOF robot, Denavit-Hartenberg parameters and the initial (1) and final (2) robot 

configurations 
 

Table 4. Initial variables bounds and maximum allowed joint speeds 

Variables θ1 
(o) 

θ2 
(o) 

θ3 
(o) 

θ4 
(o) 

θ5 
(o) 

θ6 
(o) 

Min -180 -30 -60 -270 -300 -180 
Max 150 135 210 90 -54 180 

Max allowed speed 140 o/s 140 o/s 140 o/s 270 o/s 270 o/s 400 o/s 
 

 
Table 5. Results with respect to the amount of intermediate poses 

Time normal 
distribution 

deviations % 
W Exa- 

mple 
Intermediate 

poses 

Travel 
time 
(sec) 

Average Max 

Computational
time 

(h:min:sec) 
Average Max 

1 4 0.605 2.02 3.27 0:05:51 0.3 0.35 
2 6 0.705 1.98 5.95 0:12:24 0.31 0.36 
3 8 0.791 2.43 7.4 0:23:35 0.32 0.36 
4 10 0.904 1.88 4.8 0:35:58 0.33 0.37 
5 20 1.134 2.25 5.65 2:31:43 0.33 0.38 

Weighting factors: α = 0.01, β = 20, γ = 1000, δ = 0.01 
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optimums through many applied tests. The reduced variables range during the CHM of 
optimization procedure is 0.25 rad (~15o). The loops number of GA is 10 and the loops number 
of QNA is 3 and are selected in a way that the solutions are accurate and quick enough 
simultaneously. 

The example of four intermediate poses is described in detail, in order to make obvious the 
efficiency of the proposed algorithm. The optimum variables values for the four intermediate 

 
Table 6. Prescribed and intermediate configurations for four intermediate poses 

Intermediate configurations Configuration 
 Joint angles 

Initial 
configuration 1st 2nd 3rd 4th 

Final 
configuration

θ1 27 32 20 3 -13 -23 
θ2 30 41 58 76 89 75 
θ3 26 30 30 22 5 -8 
θ4 -69 -35 -2 15 35 67 
θ5 -113 -96 -117 -104 -100 -115 
θ6 -60 -22 5 22 42 78 

 

 

 
 
Fig. 7 Joint angles values for the intermediate four poses, as well as the initial and final configurations
 

 

 
Fig. 8 Fourth intermediate configuration and the total path of the end-effector 
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poses, obtained with the proposed method are presented in Table 6. Furthermore the joint angles 
values for all the intermediate, as well as for the initial and final prescribed configurations, are 
graphically illustrated in Fig. 7. It is obvious that for all the joint angles values the transition 
from the initial configuration to the final one is smooth. The fourth configuration of the 
corresponding path of these results is graphically illustrated in Fig. 8, as well as the total path. 

Conclusions 

In the present paper a hybrid optimization method is developed to determine optimum solutions 
in problems of robotics. The proposed methodology is applied in research areas, such as the 
geometric design of spatial manipulators, the base placement of a robot in combination with the 
inverse kinematics problem and the path planning of a already placed robot. The optimized 
performance index includes the travel time on the proposed path, the obstacles avoidance, as 
well as the avoidance of singular configurations, combined or individually. Furthermore the 
smoothness of the path and the normal distribution of the intermediate poses are taken into 
account, in the case of path planning. The robot links and obstacles point clouds representations 
are retrieved by means of given 3D models using automated procedures. Numerical examples 
for two, five and six degrees of freedom manipulators regarding the mentioned problems, 
demonstrate the efficiency of the developed method. 

The developed algorithms are written in Fortran and the solid models are developed in 
SolidWorks environment. The computational time refers to a Pentium 4 PC using 1.6 GHz 
CPU. Both algorithms and graphics can be modified to agree with any manipulator or problem 
conditions. 
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Optimizarea robotilor industriali 

cu ajutorul unui algoritm hibrid genetic 
 
Rezumat 

In cadrul acestui articol se prezinta unele probleme de optimizare ale robotilor industriali folosind un 
algoritm hibrid genetic. Criteriile principale de optimizare sunt durata ciclului de lucru, ocolirea 
pozitiilor singulare, evitarea obstacolelor, cat si domeniul de lucru ale articulatiilor robotului. Problema 
de optimizare este rezolvata cu ajutorul unei metode hibride care combina un algoritm genetic, un 
algoritm quasi-Newton si o metoda de manuire a constrangerilor, folosind o functie multi-obiectiva si 
diverse constrangeri. Validitatea algoritmului propus este verificata in trei aplicatii ale robotilor privind 
proiectarea sau utilizarea lor intr-o celula de fabricatie. 
 


