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Abstract 

This paper presents a software implementation of the elitist non-dominated sorting genetic algorithm 

(NSGA-II) applied to the optimization of a complex polymerization process. A neural network modeling 

the variation in time of the main parameters of the process was used to calculate the vectorial objective 

function included in the NSGA-II. The algorithm provides the optimum decision variables (reaction 

temperature, concentration of the catalyst, reaction time, and initial composition) which maximize the 

reaction conversion and minimize the difference between the obtained copolymer composition and the 

desired copolymer composition. The algorithm has proven to be able to find the entire non-dominated 

Pareto front and to quickly evolve optimal solutions as an acceptable compromise between objectives 

competing with each other. 

Key words: neural network, non-dominated elitist sorting genetic algorithm, optimization, siloxane 

copolymer. 

Introduction 

The optimization of a polymerization process is multi-objective in nature, since it has several 

objectives, often non-commensurable and competing with each other, that must be satisfied at 

the same time. Therefore, solving such a problem is accompanied by difficulties starting with 

the way of formulating the objective function and continuing with the choice of working 

procedure and selection of the results from more possible options. In the last several years, some 

research has been reported in the literature on the optimization of polymerization reactors using 

multiple objective functions and constraints. 

Many optimization techniques involved single (scalar) objective function which incorporates 

several objectives and uses a weighted average combination [1]. This approach was applied to a 

complex polymerization process in one of our previous studies [2]. The optimization method 

was found to be simple to use, but depending on the user’s decision to specify weights to the 

different objectives based on good knowledge of the process. This can be a drawback when the 

objectives to interrelate are of different nature. A simple genetic algorithm has been used to 

generate optimal weights and eliminate the user’s implication at this step of the optimization 

process, but the risk of losing some optimal solutions remained. 

A much better approach was reported to be the multi-objective optimization with objective 

functions that are vectors [3]. As all the objectives are simultaneously treated, multi-objective 
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optimization problems lead to a set of non-dominated solutions, known as Pareto optimal 

solutions, as opposed to the single solution provided by any single objective optimization task. 

Although only one solution must be chosen at the end of the optimization exercise and this often 

must be performed with the guidance of a decision-maker, it is a better practice to first find a set 

of Pareto optimal solutions to have an idea of the extent of possible trade-offs among the 

underlying objectives before focusing on a particular solution [4]. 

Extensive research has been reported in recent literature on the algorithms used for generating 

non-dominated Pareto optimal solutions. Evolutionary algorithms (EA) have been recognized to 

be particularly suitable to solve multi-objective optimization problems because they 

simultaneously deal with a set of possible solutions which allows an entire set of Pareto optimal 

solutions to be evolved in a single run of the algorithm, instead of having to perform a series of 

separate runs as in the case of traditional mathematical programming techniques [5]. Thus, 

many evolutionary multi-objective optimization algorithms were developed among which Non -

dominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been 

found effective in solving a wide variety of problems. Multi-objective optimization of the 

polymerization processes is an example of their applications [6]. 

This paper proposes a software implementation of NSGA-II applied to the optimization of a 

complex polymerization process – synthesis of dimethyl-methylvinylsiloxane copolymers. The 

reactions for polysiloxane synthesis are very complex, with many reactions concomitantly 

occurring. The variation in time of the main parameters of the process (conversion and 

copolymer composition) was modeled with a feed-forward neural network which computes the 

fitness functions used by the genetic algorithm. The conflicting objectives were the 

maximization of the reaction conversion and the achievement of a desired value for copolymer 

composition. The decision variables optimized with NSGA-II were reaction conditions: 

temperature, concentration of the catalyst, reaction time, and initial composition. 

Multi-Objective Optimization Method 

The reactions for polysiloxane synthesis are very complex, a series of ring-opening 

polymerization, polycondensation, depolymerization by cyclization and chain scrambling 

reactions occurring in the same time, except for the case when the conditions for the kinetical 

control are created. It is of high interest to know the conditions in which copolymers with 

desired compositions in maximum yields can be obtained. Thus, the multi-objective 

optimization problem consists in maximizing the reaction conversion and achieving a desired 

value for copolymer composition, the decision variables being the reaction time, the temperature 

of the copolymerization process, the amount of catalyst, and the initial composition of the 

reaction mixture. 

The multi-objective vectorial function is composed of two fitness functions: 

f = (x, – (F1 – F1d)
2
)     (1) 

and the bounds for the decision variables are: 

0 ≤ F1 ≤ 1,   0 ≤ x ≤ 100,   20 ≤ T ≤ 110,   0.25 ≤ t ≤ 2.25,   0.5 ≤ C ≤ 5,   0 ≤ f1 ≤ 1, (2) 

where x is the reaction conversion, F1 is the copolymer composition, F1d is the desired 

copolymer composition, t – the reaction time, T – temperature of the copolymerization process, 

C – amount of catalyst, f1  – initial composition of the reaction mixture. 

The parameters x and F1 are computed using a neural network (NN) which models the variation 

in time of the main parameters of the process (conversion and copolymer composition), which 

can be represented as: 

NN [Inputs: t, T, C, f1; Outputs: x, F1] .   (3) 
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NSGA-II is the elitist non-dominated sorting genetic algorithm used to obtain the optimum 

decision variables which maximize the reaction conversion and minimize the difference 

between the obtained copolymer composition and the desired copolymer composition. 

The algorithm uses chromosomes (solutions) with 4 real-coded genes, tournament selection for 

the parents of a new chromosome, arithmetic crossover (the generation of a random number 

between 0 and 1 representing the fraction of information taken from the mother chromosome, 

the rest being taken from the father chromosome) and mutation through resetting (the generation 

of a random value between the minimum and the maximum real values of the gene). The steps 

describing the working principle of the proposed software implementation for NSGA-II, as 

adapted for the studied optimization problem, are presented next: 

1. Load parameters of the problem: popSize, noGen, F1d, TournamentSize, 

CrossoverProbability, MutationProbability. 

2. Initialize the population of chromosomes with real random values in the specified 

bounds. Compute the fitness for every chromosome using NN model. Number of 

generations = 0. 

3. Sort the population of chromosomes using non-dominated Pareto fronts according to the 

fitness. Assign crowding distance to every chromosome based on a ranking matrix 

constructed from the partial fitness of every chromosome. 

4. Obtain popSize child chromosomes by selecting parents based on rank and crowding 

distance and applying crossover and mutation. Create a new temporary population of 

size 2*popSize formed half from chromosomes representing the parents’ generation and 

half from chromosomes representing the children generation. Execute step 3. 

5. Select a new population of popSize chromosomes based on Pareto dominance and 

crowding distance. Number of generations increases with 1. 

6. If the number of generations is lower than noGen, then go to step 4, else go to step 7. 

7. Get the solution vector - the non-dominated Pareto front. 

8. Calculate F1 and x using NN model. 

9. Print the solutions: the optimum decision variables and the corresponding copolymer 

conversion (x) and composition (F1). 

In the pseudocode presented above, popSize represents the number of chromosomes in a 

population and noGen is the maximum number of generations. 

In order to define Pareto dominance, we say that a chromosome dominates another chromosome 

if all its partial fitness functions are greater than or equal to those of the other chromosome and 

one is strictly greater. 

A non-dominated Pareto front is a set of Pareto non-dominated solutions. 

The neural network used for modeling the conversion and copolymer composition is a 

multilayer perceptron, a feed-forward neural network trained with back-propagation algorithm. 

A configuration of 4 input neurons, a single hidden layer with 10 neurons, and an output layer 

with 2 neurons, noted MLP(4:10:2), was used. 

Results and Discussion 

A series of simulation were performed using different parameters for the NSGA-II. Various 

values for population size (50, 100, 200, 500) and number of generations (100, 200, 500, 1000, 
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2000) were tested with the values for the crossover probability and the mutation probability set 

to 0.9 and 0.03, respectively. The results of the simulations showed that better fitness functions 

are obtained when the population size increases, but only to a certain point. Beyond that, a 

larger population decreases the convergence speed of the algorithm, without leading to an 

improvement of the solution. With the increase in the number of generations, the execution time 

increases, but the use of elitism guarantees the fact that the solution will not worsen over time. 

The best results were obtained for a population size of 50 individuals and 500 generations. 

With the population size set at 50 and the number of generations set at 500, the simulations 

were continued using different values for the crossover probability (0.9 to 0.1) and the mutation 

probability (0.01 to 0.8). It has been observed that better fitness function values were obtained 

for a crossover probability between 0.7 and 0.9. The best results were obtained for a crossover 

probability of 0.9 and a mutation probability of 0.1. Table 1 presents some solutions – the most 

appropriate for the polymerization process discussed – selected from the Pareto fronts obtained 

after the simulations with different values for the NSGA-II parameters. 

Table 1. Selected results from the Pareto fronts 

No. 

NSGA-II parameters Decision variables 
Fitness 

functions 

Pop 

size 

No 

Gen 

Crossover 

Probability 

Mutation 

Probability 
t T C f1 x F1 

1 50 500 0.9 0.03 2.155 94.807 4.704 0.613 70.260 0.724 

2 50 1000 0.9 0.03 1.114 87.445 4.318 0.693 65.216 0.717 

3 100 100 0.9 0.03 1.346 105.051 4.922 0.931 70.882 0.742 

4 200 500 0.9 0.03 1.517 101.570 4.785 0.919 71.095 0.763 

5 50 500 0.8 0.03 1.604 82.881 4.265 0.717 69.089 0.754 

6 50 500 0.5 0.03 0.875 106.287 4.780 0.856 68.085 0.757 

7 50 500 0.9 0.01 1.382 104.083 2.554 0.823 66.945 0.709 

8 50 500 0.9 0.1 1.929 101.251 4.130 0.637 70.481 0.711 

9 50 500 0.9 0.5 1.725 106.249 3.650 0.817 70.724 0.731 

10 50 500 0.9 0.8 1.422 86.070 4.600 0.717 68.387 0.711 

 

Considering the results in Table 1, the appropriate parameters of GA used to solve the proposed 

optimization problem are: popSize = 50, noGen = 500, crossover_probability = 0.9 and 

mutation_ probability = 0.1. 

The non-dominated Pareto front obtained using the parameters mentioned above is illustrated in 

figure 1. By comparing the solutions in the Pareto front, it can be noticed that each of them 

optimizes an objective to the detriment of the other. A solution can be chosen only by 

considering an objective more important than the other, as a function of the user’s desire and 

goal. 

The results presented in Table 1 were chosen by considering the achievement of a desired value 

for copolymer composition more important than a maximum reaction conversion. The imposed 

value for the copolymer composition was F1d = 0.7. 
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By analyzing the results of the simulations, it can be 

observed that F1 has values closed to F1d, but the 

reaction conversion, x, is relatively small. In the case 

of the dimethyl-methylvinylsiloxane copolymers, the 

relatively low values for conversion can be explained 

by the reversibility of the process. The position of the 

equilibrium depends on some factors, among which 

we can also mention the silicon substituent nature. 

Thus, by increasing the bulk of the substituents, the 

equilibrium shifts to the left and, as a result, the 

conversion will be lower. The experimental data 

showed in Table 1 reflect such situation: the 

maximum conversion does not exceed 72% 

irrespective of the combination of the parameter 

values being used. 

          Fig. 1. Pareto optimal set. 

Figures 2 and 3 illustrate the influence of the decision variables on the copolymer composition 

(F1) and the reaction conversion (x). 

Fig. 2. Dependence of  F1 on decision variables. Fig. 3. Dependence of x on decision variables. 

The optimization procedure is implemented in the C# programming language, and specific 

functions are programmed for each phase of the non-dominated sorting genetic algorithm 

(NSGA-II). 

Conclusions 

The multi-objective optimization problems of a polymerization process were approached with 

techniques involving scalar objective function representing the weighted average of several 

objectives. A much better approach was reported to be the multi-objective optimization with 

vectorial objective functions which lead to a set of non-dominated Pareto optimal solutions. 
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This study proposes a software implementation of NSGA-II adapted to the optimization of a 

complex polymerization process. A neural network modeling the variation in time of the main 

parameters of the process was used to calculate the fitness functions included in the NSGA-II. 

The efficiency of the proposed method in finding the entire non-dominated Pareto front is 

illustrated by the obtained results which show that the algorithm can quickly evolve optimal 

solutions as an acceptable compromise between objectives competing with each other. Although 

the proposed method has been applied for an optimization problem with only two objective 

functions, it can also be directly used for problems with more than two objective functions and 

other processes for which the amount of knowledge is limited. 
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Algoritm genetic de sortare nedominată aplicat 

în optimizarea sintezei copolimerilor siloxanici 

Rezumat 

Această lucrare prezintă o implementare software a algoritmului genetic de sortare nedominată (NSGA-

II) aplicat optimizării unui proces de polimerizare complex. Funcţia obiectiv vectorială inclusă în NSGA-

II a fost calculată cu o reţea neuronală ce modelează variaţia în timp a principalilor parametri ai 

procesului. Algoritmul a fost utilizat pentru a obţine variabilele de control optime care să maximizeze 

conversia reacţiei şi să minimizeze diferenţa dintre compoziţia finală a copolimerului şi cea dorită. 

Algoritmul s-a dovedit a fi foarte potrivit pentru obţinerea rapidă a întregului front Pareto, ce implică  o 

serie de compromisuri între obiective divergente. 


