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Abstract 
 
A method of boring research dynamics is almost periodic functions using classical sense and almost peri-
odic probability to study the dynamics of petroleum facilities, taking into account a large number as ran-
dom factors. 
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Introduction 
 
Dynamics of machinery and plant oil-fields equipment operations for extraction requires sub-
stantiation equivalent mathematical models, generally comprising a number of discrete masses 
(concentrated), joined by elastic links or elements with distributed parameters.  

Given the complexity are a number of simplifying assumptions, considering that the masses are 
concentrated rigid bodies, elastic connecting elements have mass, and the influences of nature 
are not considered random.  
 

Critical to solving the corresponding dynamic problem, its systems work is equivalent to build-
ing mathematical models and simplifying assumptions election. 

 
Problem Formulation 
 
Be the equation of motion written in handling drum shaft in the general case:  
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where:  
Jr is the reduced mass moment of inertia;  
 ω - angular velocity roads pump;  
Mm - engine torque,  Mm = Mm(ω); 
Mr - reduced when handling drum resistant tree,  Mr = Mr(v) = Mr(kω). 
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Relation (1) is the classic expression of equivalent mathematical model of a working system, in 
this case: the operating system. Taking into account expressions (4.1.6.6 and 4.1.6.56, [1]), 
epression engine when taking into account random phenomena, is: 
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and of the resistance, taking into account the relations (4.1.6.7 and  4.1.6.55, [1]), is: 
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where: 
Mr(ω) are reduced moments;  Rjh(bh) resistant forces  
rjh (bh) - random reduced to the actuator of the operating system 
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Equivalent mathematical model representing the operating system generally unconventional for 
the dynamic study, where Mm(ω), Mr (ω) is deterministic components, and: 
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is random perturbations model 
 

Mik and Fjh as and (4), obtained by generations and reduce random moments drum handling re-
sistant tree. Solving the mathematical model (4) is not accessible at this point. From studies, if 
functions Fjh, Mik and certain conditions, solving the model becomes available, can be obtained 
the general form of the model solution. 

This phase starts to form premises simulation steps using digital programs of specific applica-
tions in mechanical drives, the electromechanical field in general and oil in particular.  
 
Definitions: 
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Mik and Fjh say are random functions almost periodic in the classical sense FAPC. These fami-
lies of functions, the customizations on the actual situation will be function that will create the 
mathematical model study. 
 

The relationship (4) becomes: 
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If conditions (5) and (6) are not met by approximating the trigonometric polynomials (7) is rec-
ommended to use random trigonometric polynomials, of the form: 
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If polynomials (8) and (9) satisfy the conditions (5) and (6), we say that functions are functions 
Fjh, Mik and almost periodic random probability FAPP. 
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Consider a linear variation in the difference deterministic components: 
 

,)(M)(M rm ω⋅µ=ω−ω                                                          (11) 
 
If Mm(ω) = A – B·ω, and Mr(ω) = A’- B’·ω, according to (15) and substituting (11) in (9) or 
(10), justified by the analysis of possible cases where the DC electric drive we obtain: 
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case of almost periodicity in the classical sense of random phenomena, namely 
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case of almost periodicity in the probability of phenomena. Relations (4) and (13) the general 
form of generalized mathematical model for system dynamics study of flexibility to both forms 
of almost periodicity of random phenomena. Mathematical model solution (12), is:   
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(14) 

For   µ > 0 (14) and µ < 0 in (15)                                                                                                         
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Model solution (15) is similar to relations (12), (13) 
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for µ > 0,                                                            (16) 
 
and: 
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for µ < 0.                                                         (17) 
 

 
Analysis of Possible Cases 
 
If  µ> 0, k = 1 and h = 1, which means that the influence is considered a single random variable 
from engine to the actuator. 
 
a1) Where almost periodicity in the classical sense. 
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a2) If the probability of almost periodicity 
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b)  Where A and B according to and considerations point to remain valid. The general solution 
of the model (14) becomes: 
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Figures at the end paper are simulated using computer applications.  
 
c) Cases studied previously, are cases of work-specific systems has consistently yield.  
Using relations, the functionality of the system actuator considering 
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is given by expression (11) becomes: 
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valid for systems with variable yield, where kF is the conversion factor resistance  
 

                                                 Mr = kF M                                                                 (22) 
 

It proposes the following notations:  
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The general solution of the model (19), in this case, becomes: 
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case of almost periodicity in the classical sense. 
 

Case of almost periodicity in probability under the conditions agreed, the general solution is 

(24) or (25), but coefficients 1ic  and 
,
1jc

 will take values ( )11 aci  and 
( )1

,
1 bc j . 

 
Simulations for Installation of Pumps with Progressive Cavity Pump 
 
Plant fluids from wells with pumping progressive cavity pumps, submersible Figure 1 has the 
following main components. Operating system (SM ─ ST ─ SCA) in the rotating pump impeller 
and support burden from the probe, surface mounted Figure 1. Pipes (P) that are screwed to the 
stator to be placed in column operation. 
 
Pumping rods (PR )which transmit the rotation of the rotor drive system with progressive cavity 
pump, pipes are placed in the probe, with the rotor screw to the bottom of the ram pump road. 
 
Progressive cavity pump (PCP), submersible known as other names that screw pump, eccentric 
screw pump, rotary pump thaw, or thaw pump rotating twister. The following figures are      
numerical applications of these results. 
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Fig. 1. Installation of pumps with progressive cavity pump. 
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Conclusions 
 
Modern pumping is equipped with a modern system of engagement of the upper part of the head 
drive system which is used to carry out special functions for screw pump. A great importance in 
the dynamic study for flow oil in technological pumping system operation is given to the way in 
which the system structure is set. A first concern in this regard was to set the structure of the 
working system in order to design the dynamic simulation as a structural system. 
 

By comparison with mathematical models established by already existing probability functions 
method proposed by various researchers, some original contributions have been made by includ-
ing the mathematical equations of the structural model, the effect given by the resistance of the 
roads screw pump in rotation and pumping phenomena by hydrodynamic flow for phase solid – 
liquid – gas, pressure occurrence during bit pumping operation. 
 

It has also been considered that energy losses of the road string result from viscous and dry 
amortization. More, a new element has been discovered. The load peak results from the system 
inertia, overcoming  resistance and hydrodynamic pressure due to action  effect.  
 

Produced mechanical waves can become dangerous for both the drill string (area of threaded 
joints) and the surface guidance structure on which the waves have effect. Identifying these 
types of variations of the variables of force and speed respectively makes possible the study of 
the induced effects in the structure of top drive rolling. 
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Modelarea dinamica a sistemelor de acţionare cu ajutorul       

funcţiilor aproape periodice 
 

Rezumat 
 
In cadrul acestui articol este prezentat modelul matematic al ansamblului sistem compus din 
echipamentul de antrenare de la partea superioară a garniturii de pomare şi a ansamblul garnitură de 
pompare. Principalele elemente de noutate aduse modelului constau in considerarea perturbatiilor 
aproape periodice in sens clasic si in probabilitate, ambele situatii definite in lucrare, aparute in timpul 
funcţionǎrii in sonda. Rezultatele se materializează prin elaborarea unui program de calcul computerizat 
a carui rezultate grafice sunt prezentate in urma simularii funcţionarii sistemului la o anumita adâncime. 


