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Abstract 

In the case of small modifications in initial conditions if we have large modifications for a complex 
system evolution, the system behavior is chaotic. For the precision oxygen analyzer exists characteristic 
parameters for those the measurements are sensitive. In this paper, we analyze the existence of such 
parameters and the chaotic behavior (i.e. stability conditions) of the oxygen analyzer function of the 
characteristic constants modifications. 
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Introduction 

In order to make the precision measures it is important the studying of the system’s stability 
depending on the oscillation of the external factors which can influence the measures. These 
factors can be of different types and the most important ones, in the case of the oxygen analyzer 
are: the distance of the centre of gravity of dump – bell from the axis of suspension, the 
magnetic field strength, the net magnetic susceptibility of the dumb – bell coil assembly, the 
volume of the spheres of the dumb – bell, the restoring torque of the suspension strip, the 
tension of the suspension spring, mechanical pressure on the dumb-bell caused by circulation of 
gases around, the combined effect of temperature etc. 

In the following lecture we are going to study the influence of the temperature and the intensity 
of the magnetic field towards the stability of the made measures. 

Elements of Chaos’s Physics 

The chaos is a disoriented system and uncontrollable (the sensitive dependence of the initial 
conditions) which means a little change in the status of a chaotic system that can rapidly lead to 
big changes in the status of the system, measured at a later moment, even if the status of the 
system is completely dependent on the initial conditions. 

The current definition of the chaos implies at least four measures, from which two most 
important are the Lyapunov exponent and typological entropies. By these two measures we can 
define the determined chaos as being that status of a determined system which is characterized 
by the local instability (the Lyapunov exponent to be positive) and global mixing (the 
typological entropies to be positive). Here we have made a difference between the determined 
chaos and the real chaos (or the general chaos), the first one is completely determined trough the 
continue un linear differential equations, only their solutions are characterized, in certain 
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conditions, by the complexity and disorder which, in other way, they appear chaotic. We are 
going to exemplify these elements by the moving of a single mobile. 

Let’s consider a particle which is moving on a given trajectory by the vector of position 
( )r r t=

r r  towards a chosen referential. If the system of the differential equations which describe 
the movement is nonlinear, then there are conditions for that particle to have a chaotic trajectory 
(determined chaos) and not a simple stable trajectory. It arrows the problem if we can cantitivly 
measure the „chaoticity” of a system? The answer is „yes” and the number which characterizes 
the chaotic character has the number of Lyapunov exponent. The introduction of this measure 
can be made by the studying of the system’s sensitivity tot o small modifying of the initial 
conditions. If as a response to small changes of the initial conditions results big effects than we 
say that the system is unstable to the initial conditions. If, on the other hand, there are no 
differences in the measures of the changes in the initial conditions the system tends to the same 
trajectory (attractor) or a set of trajectories (strange attractor), then we say that the system is 
stable. For the simplicity, we consider that the system may be characterized by a single co-
ordinate ( )q q t=  (generalized co-ordinate). At the initial moment, the particle’s position is 
characterized by 0 0( )q q t=  which implies a trajectory ( , )oq q t q= . Let’s suppose that we are 
changing a little the initial conditions with a value ( , )oq q t q= , then we are expecting a changing 
of the trajectory so that at moment the difference between the two positions to be: 

 0 0 0( , ) ( , )q q t q q q t qΔ = + Δ − .  (1) 

The sensitivity towards the initial conditions, taking into consideration the distance is 
exponential in time, can be quantified in the expression: 
 0| | e | |tq qλΔ ≅ Δ  (2) 

where λ represents the Lyapunov exponent. From the above expression we can define this 
exponent by the relation: 
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Depending on the values of λ we distinguish the following three cases: (see figure 1): 

a) 0λ < , if the Lyapunov exponent is negative, then all the trajectories converges to a stable 
status (a fix point or a fixed eye socket); that value characterizes the neoconservatives  or 
disipatives systems which tend to get to the attractor’s system, while they are loosing energy; 
the maximum value of the stability is succeeded when λ < −∞ and these status are described by 
the super stable statuses. 

b) 0λ = , this value characterizes the conservative systems. Two trajectories in the space’s stage 
will remain at the same distance in time (neither they get closer nor they get further). We say 
that the system is characterized by the Lyapunov stability.  

c) 0λ >  in these conditions, the movement becomes unstable and chaotic. Two points, no 
matter how close they are, they will get distant – in fact in the space of stages a point will have 
the possibility to get in any neighboring point. Even if the system is deterministic, we cannot 
observe the regularities or order regarding the structure of the trajectories. A bi-dimensional 
map for a dynamic system is above represented where the dark parts represent the parts where 
the system becomes unstable and chaotic, meaning that the Lyapunov exponent is positive.  
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Fig. 1. Examples of trajectories for different values of the Lyapunov exponent 

 
Still, we have to take into consideration that a Lyapunov positive exponent is not sufficient for a 
real chaos, which must also happen is the coming-back of the particle in a delimitated space for 
the superposed trajectories to produce, what we call, chaos. In this way, in the case of an λ  
positive exponent may happen that the trajectories to get so distant that they leave the interest 
space and lead to the teasing of the system, there won’t be observed the local instabilities. His 
“mixing” status of successive coming-backs of the particles in the local spaces characterized by 
instabilities, may be characterized by different number, the typological entropy H.  

The Study of the Parameter’s Dependence of Temperature 

We are going to study two measures which depend on the temperature: the volume and the 
magnetic susceptibility. In the volume’s case we are going to use the relation and in the 
susceptibility’s case we are going to use the magnetic relation. Using the solutions of the 
systemic equation given in the paper (2) we can find the dependent relations of temperature: 
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Presuming that in these situations we have the dependence: 
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and ( )0v v 1 [ ]t C= + α °  (8) 

With these variations the A constant becomes 
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Where we had noted with 0 273,15T = , and the constant 2OC  it had been determined from the 
interpolar curve proposed for the susceptibility’s dependence of temperature. 
The temperature’s dependence of the concentration is represented in fig. 2. 
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Fig. 2. The dependence of the A constant of temperature on the interval 10 40 C− ÷ °  
şi 100 400 C− ÷ °  

It can be observed that this dependence is not non-linear , if the temperature interval will arise. 
The procedural variation of the constant on the temperature interval 10 40 C− ÷ °  has also an 
approximate linear dependence, taking as example the room’s temperature 0 20 Ct = °  ( 

fig. 3). 

 
 

Fig. 3. The procedural variation of A constant on the interval 10 40 C− ÷ °  and 18 22 C÷ °  
 
In the case in which the temperature’s interval is reduced on the interval18 22 C÷ ° , meaning 
variations of grades order, it can be observed also the constants’ variations which imply 
modifications in the calculated values for a concentration which depend on the intensity of the 
electric current. 
Yet so, there cannot be observed the instability elements (the variations on small intervals of 
temperature being practically linear), from where we can draw the conclusion that the oxygen’s 
precision analyzer is practically unstable (even if it introduces measurements errors, it hasn’t got 
a chaotic regime) on the variations of temperature which influences the measure by the 
implicate variables in our model. 

The Shaping of Passing from the Stable Regime to the Chaotic Regime 

The chaotic regime is obtained for certain values of the constants which characterizes the 
system trough the ( )emF α force.  

 cos( ) sin( ) (2 )sin( )( ) sin sin sin
sin( ) 2 2 2

em
C l L d LF
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, (10) 

where 0 04 ( 1)C aH I= μ χ +  (for the measure signification which intervene, see [2,3]). 
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Taking into consideration the slow dependence of external factors of the variables which 
intervene, we are going to study the dependence depending only on the distribution of the 
inhomogeneous magnetic field of a parameter. 

 
 a) b) 

 
 c) d) 

 
 e) f) 

 
 g) h) 

Fig. 4. The passing from a stationary regime to a chaotic regime depending  
on the values of a parameter. 
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The passing from a stationary regime to a chaotic regime is gradual made, as it is shown in 
figure 4 above, where the values of a parameter are indicated in the superior part of the figures. 
As it is shown in the above figures, simultaneously with the reduction of the A parameter, the 
fluctuations become more frequent at a rotation of some degrees, sufficient for the system to 
enter in a chaotic regime. For this reason, the values of a parameter must be chosen in such way 
that the some degrees variations to remain practically constant. 

Conclusions 

It has be high lightened the measures’ dependence of certain external factors (the temperature 
and the intensity of the magnetic field) in two cases. In the first case, (the dependence 
depending on the temperature) the variations are approximate linear and in the second case (the 
dependence depending on the distribution of the magnetic field’s intensity) they are non-linear 
and, at the emphasized variations,  leading even to uncontrolled variations depending on the 
deviation’s angle. 

It is obvious that the phenomenon must not happen in order not to increase the measurements’ 
imprecision but there are situations (see the stochastic resonance (4-5)) where the noise 
produced by a chaotic phenomenon may be used in order to increase the signal. In this way, 
there can be evaluated the situations in which, even if the device enters in a chaotic regime, the 
measures can be made by extraction of an ordered signal from the chaotic signal with the help 
of the stochastic resonance. 
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Condiţii de stabilitate pentru analizorul de precizie pentru 
măsurarea concentraţiei de oxigen 

Rezumat 

Lucrarea de fata isi propune stabilirea ecuaţiilor sistemice ale analizorului de precizie pentru masurarea 
concentiatiei de oxigen, plecind de la modelul sau matematic. Rezultatele sunt prezentate de grafice 2D si 
3D. S-a urmarit stabilitatea sistemului in conditii initiale cunoscute si stabilite. 
 


