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Abstract 

The paper presents a study on tackling the settlement pattern in both the technical and economic systems. 
It highlights the software packages commonly used for systems simulation that occurs in addition to 
technical factors the human factor. 
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Introduction 

A systems model M can be seen as a mathematical relation F between input set X and output set 
Y (see figure 1). 
 

),,( ZHXFY =      (1) 
 

where  H  is the impact of external environment (a restricted set of external factors) and  Z is the 
feedback. 
 

 
 

Fig. 1 
 
We can divide the systems in two groups: 

  - Technical systems; 
  - Social systems. 
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Economical and financial systems are social systems. In technical systems H is the disturbance 
and in social systems H is the human factor. 
The next Y ( Yi ) depends on the past Y (Yi-1) 
 

)( 1−= ii YGY  ,       (2) 
 

with a probability ip . 
In complex systems, having many factors, difficult to be defined, the simulation methods are 
used for the model description. 

Approaches in Technical Process Control  

Classical feedback control does not need to know something about the subject of automation, 
while in feed-forward control, in that it implements a channel to the entrance (the source of 
disturbance) to the system output, should have a model of the process. Moreover, for a system 
to intervene before the disturbance can modify the output, it is essential that the model capture 
the dynamic of the process. 

In order to maintain the system in the field restrictions were imposed two approaches:  
- optimal approach,  
- direct approach. 

 

The two approaches differ in how to use the model process. 

Optimal Approach 

In case of optimal approach, process model is used to produce the controller model to minimize 
or maximize an objective function (function that takes both the technical performance and 
elements of economic performance). Objective function is present in the controller reference. 

This approach is known as Model Based Predictive Control (MBPC). 

The steps in MBPC algorithms are:  
- prediction, based on the model, the evolution of the output on a given period (see block called 
predictor in Figure 2),  
- calculate a sequence command that minimizes the objective function (of system performance) 
in terms of imposed restrictions (stage optimization). 
 

Each stage of calculation is an optimization problem acting on the sampling period, the 
prediction horizon and the command horizon, which causes a substantial calculation effort. [23] 
One way to lower computing effort lies is the use of linear functions around an operating point. 

On the other hand models of the process insufficiently studied (not very accurate) lead to 
problems of robustness of the system. 

A number of companies are implementing MBPC using different technologies (eg for the 
optimizer) which leads to different software packages. 

Several software packages used in industrial applications are: 
- Dynamic Matrix Control algorithm, traded by Aspen Technology company under the name 
DMC-PLUS; 
- Model Predictive Heuristic Control algorithm, met in software packages IDCOM and SMC – 
IDCOM traded by Aspen Technology company;  
- Hierarchical Constraint Control algorithm HIECON and Predictive Functional Control 
algorithm PFC traded by Adersa;  
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- Predictive Control Technology algorithm PCT and Robust Model Predictive Control 
Technology algorithm RMPCT traded by Honeywell. [38]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
 

It requires some considerations on the software packages listed:  
- On the reference trajectory, in DMC, deviations of the output to the prescribed value are 

penalized in the optimization stage. Other algorithms like IDCOM, HIECON and PFC let the 
user to determine not only what should the output reach, but how to get there. 

- PFC and IDCOM allow the penalty of error only in a few points of the prediction horizon 
called points of coincidence (in order to reduce the effort calculation). 

- RMPCT maintain the output in an area, specified by the user, and not force it for a certain 
trajectory. It can set the hill, through a parameter defined as the ratio of time in which it wants 
the system output return to the limit area and the response of the system in open loop. 

- HIECON and IDCOM calculate a single value of the command, which reduces the computing 
effort, but reduces performance in closed loop. On the other hand it establishes a point of 
coincidence where the output is forced to be identical to the reference. [28] 

- The allocation of priorities, in the sense that certain variables can overcome the field 
restrictions, is different in different software packages. Thus in DMC, these priorities are 
determined by the parameters of the weighting function objective and in HIECON and SMC-
IDCOM priorities are set by the user. 

 

From the historical MBPC was implemented on the basis of linear models [6, 7, 10, 26 and 29] 
then, the development of computer and deepen the study process has allowed the non-linear 
models [1, 27 and 31]. 

Direct Approach 

In the case of direct approach, the model is used to design the controller so that the process 
output follows a prescribed path. Reference, in this case no longer contains the goal but a path. 
This approach is known as Internal Model Control IMC. 
An IMC system has inside the controller a model of the process )(sGm , connected in parallel 
with the process )(sGP  (Figure 3), allowing comparison of the process output y with the model 
output ym. [24] 

In the figure were used : r - prescription, e - error, c - command, d - disturbance measured, y - 
system output, ym - model output, d  - reaction, Gp(s) - the process transfer function, Gm(s) – 
the model transfer function, Q (s) - the transfer function of the primary controller. 
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Fig. 3  

 
In the case of a perfect model, the model and the process has the same function transfer,  
 

)s()s( Pm GG =  
leading to 

,)( D(s)C(s)GG(s)D mP +⋅−=    (3) 
 

where )(sD is the Laplace transform of d . Hence, )()( sDsD =  and the reaction d is equal 
to the disruptive effect of d at the process output.  

If the regulator process and elements are stable, then the system will be globally stable. 
 

In the case of an imperfect model (model not just because the simplifying assumptions, 
inability to fully modeling system, etc.), the output depends on the two system inputs 
 

)()](1[)()()( 00 sDsGsRsGsY ⋅−+⋅= ,    (4) 
where 

                                           
)1 mP

P
0 G(GQ

GQG
−⋅+

⋅
=  .                                     (5) 

Because the error stationary system to be zero is necessary as a static factor of proportionality 
regulator to be equal to the inverse proportionality factor model: 

                                        
(0)

(0)
mG
1Q =  .     (6) 

Another approach, requires that the transfer function )(sQ  is equal to the inverse transfer 
function of the model: 

                                
(s)

1(s)
mG

Q = .      (7) 

 

Such y track without error dynamic the reference r  and remain insensitive to the disturbance d. 
The Internal Model Control IMC is proposed in the paper [12] being addressed in many other 
works for example [14, 15, 25, 3]. 
 

In crisis situations, meaning that the process is insufficiently known and modeling it will only 
be about recourse to a system of regulation that would allow both as process control and model 
identification.  The structure of the system says it is adaptive (IMC with adaptive structure). The 
model contains a number of parameters that are calculated (estimated) during the operation 
system [8, 20 and 32]. 
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Approaches in Economic and Financial Process Simulation 

Optimization aims to determine a set of controllable quantities entry to establish Extreme 
(maximum or minimum) an objective function. 

It calls the simulation system as the objective function values can not be determined otherwise. 
For example, we can not establish an analytical expression of the objective function or the costs 
involved in obtaining experimental the objective function values are prohibitive. Another reason 
would be that applying a set of input values, whose effect does not know him, could evolve a 
system to catastrophic damage. 

On the other hand justified the cost of economic studies for the establishment of a model 
simulation because it is less than 1% of the cost required to implement a project, the project is 
very difficult to fit (as amended) and higher expenses [13]. 
Simulation approach is in many ways, but we can fix two classes:  

- those without class model, based on the court system;  
- the class of simulation methods based on a system model. 
 

Methods based on instances generate new solutions based only on the current state. 

Model based methods establish a solutions probability distribution in the space acceptable 
solutions, through which seeks optimal solution. 
 

Among solution searching methods based on instances may highlight [11, 13]: 
- Ranking & Selection, 
- Response Surface Methodology, 
- Gradient-Based Procedures, 
- Random Search, 
- Sample Path Optimization, 
- Metaheuristics Methods. 

 

And methods based on the model were imposed: 
- Swarm Intelligence, 
- Estimation of Distribution Algorithms (EDAs), 
- Cross-Entropy (CE) Method, 
- Model Reference Adaptive Search. 
 

In this second category, because the procedure uses a memory (for solutions) may be framed the 
tabu search algorithm.  

This algorithm creates a list of tested solutions which specifies different attributes (depending 
on the purpose of optimization) by removing solutions from the list or by adding, based on 
performance criteria on attributes. [17] 
 

Swarm Intelligence, uses agents interacting locally with one another and with their 
environment, one a centralized control structure. Exemple algoritms: Ant colony optimization, 
Particle swam optimization, Stochastic diffusion search. [4, 11] 
 

Estimation of Distribution Algorithms (EDAs), uses a population of candidate solutions to 
the problem with a probability distribution over solution space.  The goal is to progressively 
improve a probability distribution on the solution space based on samples generated from the 
current distribution. [21, 22]. Example algoritms: Compact Genetic Algorithm, Popunation 
based incremental learning, Univariate Marginal Distribution Algorithm, Estimation of 
Multivariate Normal Algorithm. 
 

Cross-Entropy (CE) Method, is a Monte Carlo method for rare event simulation using cross 
entropy to measure the distance from the optimum. In the first step CE generate a random data 
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sample and next update the parameters of the random mechanism based on the data to produce a 
better sample. [9, 30, 34, 35.] 
 

Model Reference Adaptive Search, use parameterized family of distributions, and minimize 
distance to desired distributions.  As in EDAs,  updates a parameterized probability distribution, 
and like the CE method, uses the cross-entropy measure to project a parameterized distribution 
(however, the projection used relies on a stochastic sequence of reference distributions). The 
convergence can be established only in the case of Monte Carlo version. [18, 19]. 
 

Simulation models do not contain only model system investigated but also a software package 
(for example GoldSim, Arena), in which it builds model and generate a code (through which it 
will conduct exercises). However the model does not necessarily require the use of a software 
package, may use a general programming language (such as Fortran, C + +, Java) or a 
language simulation (such as Siman V, GPSS). 
 

The number of papers that mention the various simulation packages on discrete-event 
simulation at the 2007 Winter Simulation Conference is presented in figure 4. [33]. 

 

 
Fig. 4.  

 
Another simulation software survey, which contains the responses to a questionnaire developed 
by James Swain, provided by the vendors is in [36]. 
 

Certain simulations tools are used for simulation both technical and social systems [16]: 
-  SWARM; 
-  RePast (Recursie Pours Agent Simulation Toolkit); 
-  AnyLogic; 
-  StarLogo; 
-  AgentSheets; 
-  SDML (Strictly Declarative Modeling Language); 
-  MAGSY ; 
-  MIMOSE . 

To adopt a package of simulation we can target based on table 1. 
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Table 1. 

Year SWARM RePast Ascape AgentSheets SDML EXTEND 
2005 10800 334 127 227 80 21000 
2004 14000 721 249 864 1350 26000 
2003 15100 630 271 1510 283 30000 
2002 15500 679 308 1030 206 32800 
2001 15800 634 324 549 1500 35300 
 
In Table 1 are the results of search on the Internet (with Google) of the references to the 
different packages of simulation in different years. [2] For example SWRAM, in the fall of 
2005, is cited 10800 times on the Internet. 

The author’s choice of the simulation tools is (for training): SWARM, AgentSheets, EXTEND 
[2]. 

Conclusions 

Approach in technical process control and methods of identification and simulation of economic 
processes are given in the paper. 

We highlight software packages that can be used to simulate technical processes in which 
occurs the human factor.  
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Abordări comune şi abordări specifice a problemei reglării după 
model în sisteme tehnice şi în sisteme economico - financiare 

Rezumat 

Lucrarea prezintă un studiu privind abordarea problemei reglării după model atât în sisteme tehnice cât 
şi în sisteme economice. Se evidenţiază pachetele software frecvent folosite pentru simularea sistemelor 
în care intervin pe lângă factorii tehnici  şi factorul uman. 


