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Abstract 

 
This work deals with the possibilities of determining the flow rates and the nodal pressures afferent to 
loop-type gas distributing pipe networks. After recalling the equations of pressure variations and flow 
rates for simple pipes, pipes in series, pipes in parallel and branched-type pipes, two procedures of 
hydraulic design for the gas distributing pipe networks are described: the material balance and energy 
balance equations method, as well as the successive approximations method. The last method is 
illustrated with a case study which uses actual data from a complex loop-type gas distribution network. 
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Introduction 
 
Fluid transporting multiple-pipe systems containing common points, denoted as nodes, to which 
two or more pipes converge, are called as pipe networks. Pipe networks can be opened (or 
branched) and closed (or ring-shaped, also named loop-type) networks. 

Using the energy conservation equation written for each network loop and the mass 
conservation equation formulated into each grid node, while knowing the friction loss modulus 
into each section of the multiple-pipe system, the flow rate distribution and, finally, the nodal 
pressures can be determined. 
 
 
Determining Liquid Flow Rate Distribution in a Closed-type 
Pipe Network 
 
Let us consider the pipe network in figure 1, consisting in two rings (A, B) and six pipes, with 
fluid inflow in node 1 and outflow in nodes 3 and 5 [1, 4, 6]. For determining the flow rate in 
each pipe of the network, (n – 1) mass conservation equations and m energy conservation 
equations can be written, yielding a determined set of coupled algebraic equations which have p 
= m + n – 1 equations, where m is the number of rings, n – the number of nodes and p – the 
number of unknown flow rates Qij. Energy conservation equations consist in the relationships of 
annulation of the energy-loss algebraic sums for each ring. The terms in the energy equation 
have the plus or minus sign according to the clockwise or counterclockwise sense of the flow in 
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each pipe of the ring. For some pipes in the network, the sense of the flow is arbitrarily 
established, following that the positive or negative value of the flow rate obtained confirm or 
infirm the sense previously chosen. If a recirculation pump is mounted into a node of the ring, 
then the sum of the hydraulic head losses on the respective ring equals pump's hydraulic head. 

For the example in figure 1, the energy and mass 
conservation equations have the form 
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where Mij is called as friction loss modulus and, if the minor head losses are neglected, has the 
expression 
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in which λij denotes the friction factor in the sector ij, and lij, dij are the length and diameter of 
the mentioned sector respectively. 
In the case of complex closed-type pipe networks, solving the set of equations is a difficult task. 
Consequently, successive approximation methods can be used. One of these procedures, known 
as Lobacev method, consists in the following steps: 
– admitting a set of values for the flow rates Qij, according to the continuity restrictions in 
nodes; 
– calculating the sum of the head losses in each ring and comparing it with a value close to zero 
or to the recirculation pump's head; 
– computing the flow rate change in each ring ∆Qk, k = A, B, with relationships of the form 
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if the prescribed tolerance for the corresponding ring is not achieved; 
– recalculating the flow rates in each pipe with formulas like the following 
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where the positive sign of ∆Qk corresponds to the clockwise sense of flow in the ring, and the 
double correction is set for the sector belonging to both rings; 
– recalculating the head losses in all the rings. 
The calculation procedure ends when the error condition is accomplished. 

The terms including 2
BQ∆  in equation (8) can be neglected, yielding 
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Fig. 1. Pipe network with two rings 
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or, in the general case, 
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where hd ij is the hydraulic energy dissipated in the pipe ij, expressed as a head loss. 
 
 
Determining Gas Flow Rate Distribution in a Closed-type 
Pipe Network 
 
Pressure variation and flow rates for the gas flow in single- 
and multiple-type pipes 
 
Simple pipe. Admitting that the gas flow in a circular cross-section pipe, having a constant 
cross-sectional area and a straight axis, is steady and isothermal, the microscopic energy 
conservation equation can be written as 
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constituting, together with the mass conservation equation 
    .constAvM =ρ=  (15) 

and the equation of state expressed as 
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where λ is the friction factor, subscript 1 refers to pipe's initial cross-section, and A is the area of 
the cross-section of diameter d, the determined set of coupled equations for this flow. 
By eliminating the density ρ, the velocity v and the mass flow rate M between equations 
(14)…(16), we get the following differential equation 
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whose solution has the form 
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where the constant of integration a results from the boundary condition p = p1 at x = 0 as 
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According to equation (19), relationship (18) becomes 
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and represents the pressure variation law for the short-length pipes, for which the kinetic energy 
term ln(p1/p) has the same order of magnitude than the head loss. If the pipeline is long, the 
kinetic energy term is negligible, so that equation (20) reduces to the form 
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which, for the boundary condition p = p2 at x = l, corresponding to the final cross-section of the 
pipe, leads to the following expression of the mass flow rate 
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By introducing the expression (22) into the equation (21) we get the pressure variation law in a 
long pipe as 
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Invoking the equation of state for viscid gases written as 

    TRZp
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and put into the particular form 
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the volume flow rate in normal pressure and temperature conditions can be written, on the basis 
of relationship (22), as 
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On the other hand, from equation (24) written for air, in normal state conditions, we have 
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equation which can be divided by relationship (25) to give 
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and, consequently, equation (26) becomes 
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where λ can be expressed by Weymouth equation written as 
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Pipes in series. When gas flows through a pipeline consisting in n pipes with diameters dj and 
lengths lj, with j = 1, 2, …, n, connected in series, the gas flow rate in each pipe is expressed by 
equation (29) written as [5, 7] 
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where the flow rate modulus Kj has the expression 
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Consequently, relationship (31) yields 
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which, by summation member by member for the n pipes of the pipeline, leads to the equation 
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we get the relationship 
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where Ke is the equivalent flow rate modulus. 
Pipes in parallel. In this case, the flow rate of the pipe-system characterized by the same initial 
and final ends for all the individual pipes, has the expression 
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where Qj has an expression similar to (36), namely 
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and the flow rate modulus is given by equation (32). 
Later on, equation (37) becomes 

    ∑
=

−=
n

j j

j

l

K
ppQ

1

2
2

2
10  (39) 

and, using the equivalent quantities Ke and le defined together as 
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we obtain the relationship 
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Branched pipe systems. A branched pipe system involves nodal gas inflows and outflows 
defined by known flow rate values for the given pressures p1, pn+1 at the initial and final pipe-
system ends, for the problem of dimensioning the main (distribution) pipe which has a constant 
diameter either across its full length or for each consecutive inter-nodal section. 
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In the first case, we start from the fact that the flow rate on the inter-nodal section j is given by 
equation (31) written as 
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where Kj = K has the expression (32). Then, by separating 2
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summing these terms for the whole distribution pipe, we get the formula 
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from which yields, using equation (32) written under the form 
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the diameter of the distribution pipe. 
In the case of a constant diameter for each inter-nodal section, we admit a linear variation for 
the pressure drop between two consecutive nodes, according to the relationship 

    ( ) ,111 ++ −=− n
j

jj pp
l
l

pp  (46) 

where l is given by the second equation (35) and, consequently, the flow rate modulus obtained 
from formula (42) written as 
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allows us, using equation (32), to get the diameter dj of the section studied. 
 
 
Calculating gas flow rate distribution and nodal pressures 
 
As in the case of liquid distribution through a closed-type pipe network, which was treated in 
the second paragraph of this work, the determination of gas flow rate distributed through such a 
network can be done either by a) formulating and solving the energy balance and material 
balance equations, or b) using the successive approximation method. 
The procedure of using the energy balance and material balance equations is known, in the case 
of gas distribution through closed-type pipe networks, as the network un-looping method. 
Considering two neighbored rings of the network, as in figure 2, by un-looping we get the 
equivalent open network in figure 3. 
The algorithm specific to this portion of the closed-type network consists in the following steps: 
– choosing a flow rate distribution (in normal pressure and temperature conditions) so that, in 
node 1, the incoming flow rate has the distribution 
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using the calculation flow rate 
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where q is the component of the transit flow 
rate defined as (Q – q) and n = 1, 2, 3, … 
indicates the iteration number; 
– calculating the pressure value in node 3 with the relationships 
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where K is given by equation (32). 

If the values of pressure p3 obtained from equations (51) and (52) are not equal, within an 
acceptable tolerance, another flow rate distribution is chosen and the calculus will continue until 
the equality is achieved. Then, we proceed by calculating pressure p4 with the relationships 

    ,12342

2
1234

14 l
K

NQ
pp c−=  (53) 

    .16542

2
1654

14 l
K

NQ
pp c−=  (54) 

b) The successive approximation method, which was presented in the second paragraph for the 
case of liquid distribution through a closed-type pipe network, can be directly adapted to the 
case of gas distribution according to the following algorithm: 
– admitting a flow gas rate distribution which satisfies the mass balance equation in each node; 
– establishing an actual or arbitrary flow sense in each section of the pipe network; 
– writing the energy conservation equation, similar to relationship (1), in each network node, as 
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where, according to equation (31), we have 
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Fig. 2. Two adjacent rings of a pipe network 

 
Fig. 3. Opened network equivalent to the closed network in figure 2 



Gheorghe Bârjovanu, Eugen Mihail Ionescu, Corina Teodorescu, Ion Creţu  16

If the condition (55) is not satisfied, the flow rate distribution is modified with ∆Qk for each 
segment of every ring, where k = A, B is the ring index, as in relationships (9), (10), (11). 
Finally, from equation (56) written for each ring yields, for the flow rate corrections, the solution 
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similar to relationship (13). 
 
 
Case Study 
 
The target of this study [10] is the determination of gas flow rates distributed by each section 
and the calculation of nodal pressures in the case of gas supply, using polyethylene pipes, into a 
urban center having household, socio-cultural and industrial consumers. Input data include: 
network framework presented in figure 4, lengths of the inter-nodal sections, and calculation 
(consumption) flow rates, the system also including a regulating-measuring station at the 
delivery point (SRMP) as well as repartition pipes at medium pressure (ranging between 600 
kPa and 200 kPa) which feed, at preset flow rates, two sector regulating stations (SRS), 
outputting in the gas distribution network of low pressure (ranging from 200 kPa to 5 kPa). 

The calculations afferent to this study are based on the use of the successive approximation 
method previously presented, by means of a specialized software which has as input data the 
lengths of the inter-nodal sectors and the flow rates afferent to these sectors and produces as 
outputs the zonal flow rates, the pressures in the network nodes, the diameter of each inter-nodal 
sector and the actual velocity in the network pipes, for all the 974 sectors. 
The results of the calculus are presented, as an illustration, for the inter-nodal sectors between 1 
and 50, in table 1, where the negative flow rates signify a flow sense opposite to the one 
considered when applying the procedure, while the null flow rate corresponds to the immobility 
of gas into that sector. 
 
 
Conclusions 
 
o The pipe networks dedicated to fluid (liquid (water) or natural gas) distribution can be divided 

into open-type or branched networks and closed-type networks. 

o The determination of fluid (liquid or gas) flow rate distribution through a closed-type pipe 
network can be done by using either the method of formulating and solving the energy 

 
Fig. 4. Case study network framework 
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balance and mass balance equations, known, for gas distribution, as the network un-looping 
method, or the successive approximation procedure, which is called, in a specific variant, the 
Lobacev method. 

 
Table 1. Parameters of the pipe network 

Sector 
number 

Initial 
node 

Final 
node 

Sector 
length, 

m 

Sector 
flow 
rate, 

hm3
N  

Total 
flow 
rate, 

hm3
N  

λ Re, 
·106 

Pressure 
in initial 

node, 
105 Pa 

Pressure 
in final 
node, 
105 Pa 

Inner 
dia-

meter, 
mm 

Actual 
velocity, 

m/s 

1 2 3 0.465 92 –92 0.0259 5.10 1.725 1.959 50 11.00 
2 3 4 0.905 19 –100 0.0248 4.30 1.959 1.974 63 6.87 
3 4 5 0.050 10 –125 0.0243 5.40 1.974 1.986 63 8.51 
4 5 7 0.410 95 –73 0.0258 4.10 1.986 2.108 50 7.93 
5 7 8 0.120 84 84 0.0265 5.80 2.108 1.973 40 13.90 
6 3 9 0.070 10 ľ10 0.0369 0.71 1.959 1.960 40 1.79 
7 4 10 0.125 19 15 0.0324 1.00 1.974 1.968 40 2.53 
8 5 6 0.100 12 –158 0.0241 6.90 1.986 2.024 63 10.69 
9 6 7 0.260 37 –239 0.0231 8.70 2.024 2.108 75 10.96 

10 6 11 0.060 4 43 0.0232 3.00 2.024 2.008 40 7.20 
11 11 12 0.065 4 37 0.0350 2.50 2.008 1.992 40 6.21 
12 14 13 0.150 3 3 0.0531 0.18 2.008 2.007 40 0.43 
13 15 15 0.870 115 –115 0.0250 5.00 1.820 2.008 63 8.15 
14 19 19 0.100 20 –166 0.0240 7.20 2.008 2.049 63 11.06 
15 20 20 0.030 13 –198 0.0234 7.20 2.049 2.056 75 9.13 
16 21 21 0.025 5 –211 0.0232 7.70 2.056 2.062 75 9.73 
17 22 22 0.080 16 –263 0.0227 9.50 2.062 2.093 75 11.98 
18 23 23 0.045 10 –296 0.0226 11.00 2.093 2.115 75 13.33 
19 29 29 0.380 267 –960 0.0197 21.00 2.115 2.241 125 15.07 
20 30 30 0.090 63 132 0.0272 9.10 2.241 2.011 40 20.92 
21 31 31 0.115 164 –86 0.0253 5.90 2.011 2.141 40 13.88 
22 32 32 0.140 80 –243 0.0230 11.00 2.141 2.251 63 14.98 
23 33 33 0.065 6 81 0.0421 5.60 2.251 2.188 40 12.31 
24 34 34 0.145 12 32 0.0352 2.20 2.188 2.163 40 5.00 
25 35 35 0.285 25 –45 0.0309 3.10 2.163 2.254 40 6.91 
26 36 36 0.145 12 –19 0.0352 1.30 2.254 2.263 40 2.86 
27 37 37 0.120 10 –52 0.0320 3.50 2.263 2.311 40 7.60 
28 38 38 0.070 6 –52 0.0421 3.50 2.311 2.338 40 7.47 
29 39 39 0.130 11 –85 0.0302 5.80 2.338 2.465 40 11.95 
30 15 16 0.030 0 30 0.0298 2.10 2.008 2.003 40 5.11 
31 16 17 0.365 18 18 0.0326 1.20 2.003 1.980 40 3.03 
32 16 18 0.165 12 12 0.0351 0.85 2.003 1.998 40 2.09 
33 19 24 0.050 18 18 0.0325 1.30 2.049 2.046 40 3.02 
34 20 25 0.100 9 9 0.0381 0.60 2.056 2.054 40 1.43 
35 21 26 0.240 36 36 0.0292 2.40 2.062 2.009 40 5.91 
36 22 27 0.300 39 –16 0.0288 1.10 2.093 2.108 40 2.58 
37 27 28 0.150 20 20 0.0320 1.40 2.108 2.097 40 3.21 
38 29 40 0.055 6 –1.098 0.0196 24.00 2.241 2.264 125 16.68 
39 40 41 0.075 8 –1.191 0.0192 23.00 2.264 2.285 140 14.24 
40 41 42 0.045 8 201 0.0234 8.70 2.285 2.261 63 11.96 
41 42 47 0.050 9 183 0.0235 7.90 2.261 2.239 63 11.00 
42 47 43 0.330 60 89 0.0264 6.10 2.239 1.830 40 14.62 
43 43 44 0.060 11 25 0.0308 1.70 1.830 1.822 40 4.62 
44 44 45 0.060 11 11 0.0363 0.73 1.822 1.820 40 1.97 
45 44 49 0.070 4 4 0.0476 0.25 1.822 1.822 40 0.69 
46 43 48 0.100 4 4 0.0472 0.26 1.830 1.829 40 0.70 
47 47 27 0.355 49 85 0.0254 4.70 2.239 2.108 50 8.64 
48 42 46 0.100 10 10 0.0368 0.69 2.261 2.259 40 1.51 
49 41 50 0.080 12 12 0.0365 0.83 2.285 2.282 40 1.79 
50 30 51 0.135 26 –35 0.0307 2.40 2.011 2.039 40 5.80 
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o Because this work attributes a primordial interest to the determination of the total gas flow 
rate distribution through a closed-type pipe network, the establishment of pressure variation 
law and gas flow rates formulas when gas flows through single-type pipes, pipes in series, 
pipes in parallel and branched-type pipes was considered and proven to be necessary. 

o The great usefulness of the detailed approach of the branched-type gas transporting pipes case 
is revealed mainly by the treatment of the problem of calculating the gas flow rate distributed 
and the nodal pressures, by using the network un-looping method, knowing that we can 
transform two adjacent closed loops of the pipe network into a sequence of branched pipes, 
for which the problem of establishing the diameter of each inter-nodal segment can also be 
easily solved. 

o The case study, dedicated to the determination of gas flow rates distribution through pipe 
sectors and nodal pressure values, afferent to the gas supply into an urban center involving 
household, socio-cultural and industrial consumers, for a closed-type pipe network having 974 
sectors, in presence of gas furniture for two sector regulating stations (SRS), permitted, by 
using a specialized software, the calculation of the network gas-dynamic parameters as well as 
the values of the diameters of all the sectors afferent to the pipe-system considered. 
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Calcularea parametrilor hidraulici aferenţi distribuţiei fluidelor 

prin reţele de conducte de tip închis 
 
Rezumat 
 
Lucrarea studiază posibilităţile de determinare a debitelor şi presiunilor nodale aferente reţelelor de 
conducte de tip închis pentru distribuţia gazelor. După ce sunt expuse ecuaţiile variaţiei presiunii şi 
debitului de gaze aferente conductelor simple, în serie, în paralel şi ramificate, în lucrare sunt descrise 
două proceduri de calcul hidraulic al reţelelor de conducte pentru distribuţia gazelor: metoda ecuaţiilor 
de bilanţ material şi energetic, precum şi metoda aproximaţiilor succesive. Ultima procedură este 
ilustrată cu un studiu de caz care foloseşte date reale dintr-o reţea complexă de distribuţie a gazelor 
naturale de tip închis. 


