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Abstract  

The aim of this work is to implement and evaluate the performances of neural network model-based 

predictive control system (NNMPC) applied to fluid catalytic cracking (FCC) reactor. The paper is 

structured in four parts: the presentation of the FCC reactor, neural network based predictive control 

overview, the proposed predictive control structure for the FCC reactor and simulation results. In the 

first part of this paper is analyzed the FCC reactor, where are identified the main subsystems associated 

to the plant and the interaction of these subsystems. In the second part are presented the theoretical 

aspects of the model predictive control based on neural network. In the last part are presented the 

performance of the neural network predictive control structure proposed for the temperature control of 

cracking reactor. The simulation experiments have confirmed good regulatory and tracking properties of 

the proposed control system. Simulation test have proved that the neural predictive control could be used 

in an industrial environment. 
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Introduction  

Petroleum refineries use fluid catalytic cracking (FCC) technology to convert crude oil in 

gasoline, diesel and heating oil. About 45% of worldwide gasoline products come from FCC 

process. The economic benefits of refinery could be considerably increased if proper control and 

optimization strategy on operating (e.g. temperatures, flow rates etc) and quality (e. g. 

composition) variables are implemented on FCC units [1, 5]. 

There have been many studies in literature addressing the problem of controlling FCC units. For 

instance, non-linear controllers [3, 9] and more complex mode predictive strategies [2, 10] have 

been proposed. Overall, these studies have shown that the FCC units are non-linear, 

multivariable and complex dynamic control systems. Complexity often is caused by the strong 

interaction existing between the control loops. 

Most FCC control designs deals with the problem of stabilizing the process temperatures at a 

given set point. From an operating viewpoint, temperature regulation is basic control objective 

imposed to guarantee a safe process operation. Nevertheless, the main task in operation and 

control of FCC units is regulation of gasoline quality at the output riser. In practice, gasoline 

composition regulation is approached via indirect methodology where a specified riser outlet 

temperature is regulated at given set point which, in principle, corresponds to the desired 

composition values.  
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The work presents the author contribution on developing a model predictive control based on 

neural network for temperature regulation in reactor of FCC. 

The reactor structure 

The process structure of the catalytic cracking includes next subsystems: reactor, regenerator, 

preheating furnace [11].  The reactor represents the principal element of the catalytic cracking 

plant. Because the modeling of the reactor represents a difficult task, the author suggests the 

decomposition in three subsystems [12]. These are:  

i) The interfusion nod subsystem, located at the de base of the riser, here the fresh gas oil 

is brought into contact with the hot regenerated catalyst, which leads to the vaporization 

of the gas oil. It assumed that the vaporization of the feed is instantaneous. 

ii) The riser subsystem is a vertical standpipe 25-40 m in length. All cracking reactions 

take place in riser over a short time 2.5 s. These reactions are primarily endothermic.  

iii) The reactor-stripper subsystem, located at the top of the reactor, a subsystem that 

realizes the catalyst separation from the feed stock vapors   and the reaction products. 

The model used for simulation of the process is developed by Popa [13]. The model is 

sufficiently complex to capture the major dynamic effects that occur in an actual FCCU system 

(multivariable, complex interacting and highly nonlinear). The model is implemented in 

Matlab
®
 and was used for the study of different operating regimes induced by design changes 

and by changing operation strategies, but also for investigating which control strategies may be 

implemented. 

The structure of the predictive control based on neural network 

Model predictive control (MPC) is known to be a very powerful control strategy for a variety of 

chemical process [7].  

Many chemical processes are highly nonlinear and MPC based on linear process models may 

results poor controller performance. There for, MPC techniques have recently been extended to 

nonlinear process [4, 6, 8]. An alternative to MPC for nonlinear process is neural network 

predictive control, which ensures high performance using identification of the process prior to 

implement a control strategy. 

The control structure of predictive neural control is presented in figure 1. The neural network 

and the input have the same input uk. The network has a supplementary input that is connected 

to the output of the process yk. 

 

Fig. 1. The scheme of predictive neural control system. 
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NNMPC for the reactor of the FCC 

Figure 2 presents a characterization of the cracking process form the point of view of 

automation, the input and output variables.  

The controlled variables have been selected to provide, through control, a safe and economic 

operation. The controller variable is reactor temperature Tr, this variable has to be maintained at 

certain level to a desired maximum conversion of the feed oil. The manipulated variables are 

Qcat – regenerated catalyst flow rate. The disturbances variables are Qmp, Tmp – raw material 

flow and temperature. 

 

Fig. 2. The input-output of the reactor. 

The implementation of the predictive control involves the process identification and control 

design. The NN Predictive Controller used to implement is from Network Toolbox from 

Matlab
®
.  

Because a neural network is a universal estimator, in the identification phase; the process 

dynamic is copied in the neural network structure.  When the process is characterized by 

mathematical relation the training of the NN can be done offline by correlating the inputs 

applied to the process with outputs delivered by the process. After the training procedure the 

NN is representing a replica of the physical process. 

As excitation for the system a Pseudo-random Multilevel Signal (PRMS) is used, where the 

amplitude is changed at each N-th sampling instant or at random instance. An example of 

PRMS is presented in the figure 3. 

Practical experience has shown that the best 

model performance will be achieved by the 

duration of change (or hold time) in 

amplitude and the sampling interval. The 

holding duration must be long enough to 

cause an effect in the output but limited in 

order to cover just the dynamic of the 

system. If the sampling interval is too large 

the data will contain poor information about 

the high frequency response, and if the 

sampling interval is too small, the 

disturbances may have a relatively large 

influence by causing an excess of poles. For 

the current experiment the sampling interval 

was chosen to be 10-20% of the settling time 

of the step response of the system. 

Fig. 3. The PRMS training signal and system response. 
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After identification procedure, the neural network is trained whit this data.  The performance of 

the neural network is presented in figure 4, and the validation is presented in figure 5. The 

optimal number of the nodes in the hidden layer found by author is seven. 

    

Fig. 4. The neural network performance.              Fig. 5. The neural network validation. 

The controller design of MPC involves the replica of the plant model and an optimization 

algorithm to select the control inputs over a finite time horizon. By having the process 

embedded in the NN, the controller is generating offline more candidate commands to NN 

structure and is recording the NN outputs. Using a cost function based on the mean-squared 

error the controller is selecting the appropriate command for the process evolution. This generic 

procedure is used just for SISO systems. 

The simulation results 

The control structure of temperature from reactor is presented in figure 6. For the performances 

evaluation of the MPC based on neural network on temperature control of the cracking reactor 

were tested two scenarios: 

 Test  A which consists in step change the controller reference - the temperature of the 

reactor Tr; 

 Test B which consists in step change of a disturbance, for example raw material 

temperature - Tmp; 

 

Fig. 6.  The reactor temperature control structure. 
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Test A:  In figure 7 are presented the evolution of temperature Tr and the evolution of the Qcat at 

the change of reference. From figure it can be seen that the adjustment automatically succeed to 

bring the temperature to the prescribed value with no stationary error. The prediction horizon 

used is 7. 

Test B: Figure 8 presents the evolution of temperature in the reactor Tr and the flow catalyst 

regenerate - Qcat for a disturbance change (raw material temperature- Tmp). 

  

Fig.7. Evolution of the reactor temperature and 

catalyst flow for a reference step change. 

Fig.  8. Evolution of the reactor temperature and 

catalyst flow for a disturbance step. 

Conclusions 

In this work are discussed aspects of the implementation of a controller based on predictive 

neural networks to adjust the temperature of the cracking reactor. The main author contributions 

in this paper are: 

 development of a neural network that is able to capture the dynamic of the cracking 

reactor; 

 elaboration of the control structures for the cracking reactor that includes the neural 

networks; 

 in the final part of the paper the performance of the control structures proposed for the 

reactor is demonstrated by simulation. 
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Sistem de reglare predictiv bazat pe reţele neuronale 

pentru reactorul instalaţiei de cracare catalitică 

 Rezumat 

Obiectivele acestei lucrări sunt implementarea şi evaluarea performanţelor unui regulator predictiv 

bazat pe reţele neuronale aplicat reactorului din cadrul instalaţiei de cracare catalitică. Lucrarea este 

structurată în patru părţi: structura procesului, aspecte ale reglării predictive bazată pe reţele 

neuronale, structura de reglare predictivă bazată pe reţele neuronale utilizată pentru reglarea 

temperaturii în reactorul de cracare şi rezultatele simulărilor. În prima parte a lucrării este analizat 

reactorul instalaţiei de cracare catalitică, unde sunt identificate subsistemele asociate reactorului şi 

interacţiunile între acestea. În partea a doua a lucrării sunt  prezentate aspectele teoretice ale unui 

regulator predictiv bazat pe reţele neuronale. Lucrarea se continuă cu prezentarea  performanţelor 

structurii de reglare predictivă bazată pe reţele neuronale, propusă pentru reglarea temperaturii în 

rectorul de cracare. Rezultatele simulărilor au evidenţiat faptul că sistemul de reglare propus reuşeşte să 

aducă într-un timp relativ scurt ieşirea  procesului la valoarea prescrisă. În această situaţie se poate 

spune că reglatorul predictiv bazat pe reţele neuronale poate fi utilizat cu succes într-un mediu 

industrial. 


