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Abstract 
 
In the paper is presented a way of calculation of the axial reactions for a double embaded beam loaded 
transversally with an uniform pressure. In order to find the value of the reaction force the differential 
equation is obtained on the deformed shape of the beam. The final equation is solved nummerically, 
usisng a specialized programme and the results obtained are exemplified in a calculus example. 
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The Principle of the Method 
 
It is considered a double embedded beam with the length l and being loaded by an uniform 
pressure q (fig. 1) between a and b abscissa. 
 

 
 
 
 
Because after the bending the length of the beam rises some horizontal reaction forces are 
expected to appear at the ends (No). 

The second order differential equation that describes the bending of the beam is [3]: 
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Fig. 1. A double embedded beam loaded  
with an uniform pressure 
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where v is the deflection of the current section , M(x) is the bending moment in the same section 
and EI is the bending rigidity of the beam. 

The bending moment from the current section can be written on the deformed shape of the beam 
under the form : 
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Replacing (2) in (1) the following differential equation is obtained: 
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Generally the above differential equation has to verify the following limit conditions (in the 
origin):  
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In the (4) limit conditions v and ϕ  represent the deflection and the slope of the current section 
of the beam. For the load case presented in figure (1) is obvious that 0=ov  and 0=oϕ . 

The general solution of the (3) differential equation can be written under the form: 
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where v  represents the particular solution that is function of the external loads of the beam. 

In order to find the particular solution for the load presented in figure 1 it is considered an 
uniform pressure that acts on the beam between a and b abscissa. A supplementary current 
abscissa xo is considered (fig.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Uniform pressure acting a beam 
 
The suplimentary abscisa xo allows the calculation of the particular solution v , by considering a 
particular term produced by the concentrated force q dxo and integrating over the active area: 
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o between a and x if x < b; 
o between a and b if x > b. 
 

The particular solution produced by the uniform pressure has to be establishrd by a translation 
of the starting point : 
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Integrating the above relation in respect with xo over the active area it results: 
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For the particular case presented in figure 1 the particular solution (7) can be written under the 
form: 
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because the beginning abscissa of the uniform pressure is 0=a . 

Taking into consideration the above relation and the limit conditions (4b) the following 
equations system is obtained: 
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The unknown Mo and To can be expressed from (9): 
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The above relations are function of the unknown No because the k coefficient depends on the 
axial reaction force. 
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In order to determine the reaction force from the starting point it can be noticed that the 
difference between the new and the old length of the elastic curve can be expressed by the 
relations: 
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From the (12) equality it can be obtained the value of No only by a nummerical solving. In this 
respect a specialised programme has been used and the unknown No has been obtained for a 
calculus example. 
 
 
A Numerical Example 
 
A double embedded beam having the length l = 1m is loaded by an uniform pressure q = 
1N/mm over the entire length. The cross sectional area of the beam is a rectangle having the 
dimensions b x h (40 x 10 mm). The beam is made from steel having the longitudinal elasticity 
modulus E = 210000 N/mm2. The abscissa of the beginning of the external pressure is a = 0 and 
the current abscissa x is always smaller than the length of the beam (fig.3). 
 
 
 
 
 
 
 
 
                               Fig.3. Double embedded beam loaded entirely with uniform pressure 
 
The unknown No is the first root of the equation that results from the (12) equality. For the 
numerical example presented in figure 3 the value of axial reaction force is No = 2400 N. With 
this value it is possible to establish the variations of the deflection, slope, bending moment and 
shear force along the beam. This variations are presented respectively in figure 4, 5, 6 and 7. 

 

 
Fig. 4. The deflection curve 
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Fig. 5. The variation of the slope  

 
 

 
Fig. 6. The variation of the bending moment 

 
 

 
Fig. 7. The variation of the shear force 
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Analysing the diagrams presented above it can be noticed that the maximum deflection of the 
beam is 3.427 mm (if the axial reaction force is taken into consideration) and 3.72 mm if the 
axial reaction force is neglected. Regarding the bending moment, the maximum value is 
obtained at the ends (Mmax = 78929.5 N.mm – when the axial reaction force is taken into 
consideration) and Mmax = 83333.33 N.mm when the axial reaction force is neglected. The errors 
obtained are around 8% for the deflection and 5.5% for the bending moment. It is important to 
notice that the axial reaction force that is obtained produces a composed load that can modify 
the stress values in every section of the beam. If the rigidity of the beam is lowering (for 
example by decreasing the depth of the cross sectional area) it is possible that the errors 
obtained to be more significant. 
 
 
Conclusions 
 
In the paper it is presented a method of calculation of the axial reaction force that appears when 
a double embedded beam is transversally loaded with uniform pressure. The results obtained are 
analysed in a calculus example. The errors between the classical way of calculation (of the 
efforts and of the displacements of the beam) and the presented method are around 8% but may 
become higher if the rigidity of the beam decreases. 

In order to be more efficient the theoretical results have been transposed in a numerical 
programme that allows the calculation of the roots of some equations and displays the variations 
of the efforts and of the displacements. 
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Reacţiuni axiale pentru o bară dublu încastrată solicitată 

cu o presiune uniform distribuită 

Rezumat 

În lucrare se prezintă o metodă de calcul a reacţiunilor axiale pe o bară dublu încastrată solicitată cu o 
sarcină uniform distribuită. Rezultatele obţinute sunt analizate pe un exemplu de calcul, din care se 
evidenţiază erori de aproximativ 8% (între metoda clasică şi cea prezentată în lucrare). Erorile pot 
deveni mai importante dacă rigiditatea la încovoiere a barei se micşorează. 
Pentru a deveni mai eficientă, metoda prezentată a fost transpusă într-un program de calcul care 
determină rădăcinile ecuaţiilor şi care trasează grafic variaţiile eforturilor şi deplasărilor. 


