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Abstract 

The two papers present a general algorithm for determining the dynamic response of a structure with any 
type of damping, based on the Galerkin method. The elaborated algorithms are transposed into computer 
programmes. The paper presents a new method for determining the parameters of dynamic absorbers of 
vibrations, using a C.R.D. programme.  

Key words: pulsations, damping, simple dynamic absorber, inertial matrix, matrix of rigidity, 
disturbance force, residue 
 
 

Introduction 

The dynamic calculation of structures is achieved in most cases on the basis of dynamic models 
with discrete masses which constitute systems with a finite number of freedom degrees. For 
such a system the equations of motion are written under the matrix form: 

)(
...

tFRBM =⋅+⋅+⋅ ηηη       (1) 

where:  

M is the inertial matrix ( ∈M nn,M ); 

B  is the matrix of damping coefficients; ( ∈B nn,M ); 

R  is the matrix of rigidity coefficients ( ∈R nn,M ); 

)(tη  is the motion vector ( )(tη ∈ 1,nM ),  

)(tF  the vector of disturbance forces, where  T
n tFtFtFtF )](),...,(),([)( 21= .  

In order to obtain the dynamic response in the case of a structure with a finite number of degrees 
of freedom, alongside with equation (1) there must also be given the initial conditions: 
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In order to determine the dynamic response along the time interval ],0[ t∆   where  0ttt −=∆ , 
we choose the simplest vector function able to approximate the vector of displacements 

4
3

3
2

21)( AtAtAtAt ⋅+⋅+⋅+=η ,       (3) 
where 4321 ,,, AAAA are known vectors with n dimensions, which are determined from the 
conditions set at the beginning and the ending of the ],0[ t∆ time interval in displacements and 
velocities. At the beginning of the 0=t  interval, these conditions are given by (2). By replacing 
we obtain : 01 η=A and 02 vA = . At the ending of the tt ∆=1  time interval these conditions are 
not known and will therefore be noted as follows:  

                                          tt ηη =)( 1  and =)( 1
.

tη tη
.

.                                          (4) 
Conditions (4) imposed on the function (3) allow obtaining vectors 3A  and 4A . Consequently 
the displacement vector (3) becomes: 
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Replacing the displacement vector (5) in the equation (1) generates the residue: 

)(
...

tFRBM −⋅+⋅+⋅= ηηηε       (6) 

The determination of vectors tη  and  tη
.

 (at the moment tt ∆=1 ) will be realized out of the 

conditions which must be fulfilled by residue with the basic functions )(1 tΦ  and )(2 tΦ , 
where: 
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which multiply in (5) the unknown vectors tη  and  tη
.

. Using the Galerkin method of 

ortogonalizing of the residue with functions (7) we obtain the conditions : 
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Fig. 1. The two degree-of-freedom 
system 
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out of which there result parameters tη  and  tη
.

. In order to determine the dynamic response of 

problem (1) with the initial conditions (2) along a ],0[ T time interval, this interval is divided in 
a m sub-intervals ],[ 1+ii tt with )1,...,2,1,0{ −∈ mi  which may be equidistant or not. The 
algorithm presented in the first stage is applied along the ],[ 10 tt interval with 01 ttt −=∆  and 

there results )( 1tη , )( 1
.

tη   and )(tη  for ],[)( 10 ttt ∈∀ . In the next stage we consider 10 tt = , 

21 tt =  and 12 ttt −=∆ which has the initial conditions obtained in the previous stage and the 
algorithm is resumed.  

There results )( 2tη , )( 2
.

tη   and )(tη  for ],[)( 21 ttt ∈∀ . The same procedure is applied up 

to the ],[ 1 mm tt − interval with ]Ttm =  and there results )( mtη , )(
.

mtη   and )(tη  for 

],[)( 1 mm ttt −∈∀ . In order to directly obtain the dynamic response of a structure there has 

been established an iterative, incremental procedure based on the Galerkin method. Within a 
12 ttt −=∆ time interval, knowing the initial conditions (displacement and velocities at 1t ) 

there can be determined displacements and velocities at 2t , setting the condition of 
orthogonalizing the residue with two weight functions chosen accordingly. On the basic of 
displacements and velocities at moments 1t and 2t  there can be expressed displacements and 
velocities for any  ],[)( 21 ttt ∈∀ .  

The algorithms elaborated for proper pulsations with damping and for the direct dynamic 
response, have been transposed into computer programmes written in Turbo-Pascal, which 
allows for the results thus obtained to be easily implemented in engineering practice noted 
C.R.D. 9.  

Contents 

The simple dynamic absorber 

We take into account the two degree-of-freedom 
system from Figure 1, which is composed of the 
primary oscillatory system with the elastic constant k 
and the mass m and the attached oscillatory system 
with the elastic constant ka and the mass ma. When a 
disturbance force F1

.. ei. w. t is applied to the primary 
mass m, the system starts to vibrate.  

The differential equations of the movement are: 
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where x1(t) and x2(t) are the two movements of the masses. The solution of the system (9) is in 
the form:  

 =)(1 tx  tiea ⋅⋅⋅ ω
1  si tieatx ⋅⋅⋅= ω

22 )( , (10) 
where a1 and a2 are the amplitudes of the movement of the two masses.  

By replacing (10) in (9) we can obtain: 
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The following notations are made: 

k
F

xst
1=  (the static movement of the primary mass); 

amm
kP

+
=0 (the specific pulsation of the primary system with ma attached to the mass m); 

a
a

a m
k

P =  (the specific pulsation of the attached system); 

amm
m
+

=µ (the ratio between masses); 

0P
P

n a=  (the ratio between the pulsation of the disturbing force and the specific pulsation of the 

primary system with the attached auxiliary mass ma); 

0P
ω

=Ω (the ratio between the pulsation of the disturbing force and the specific pulsation of the 

primary system with the attached auxiliary mass ma).  

Through complex calculus which is specific to every type of absorber[2], we can determine the 

following ratios
stx

a1  and 
stx

a2 .  

Figure 2 represents the variation curve of the 

ratio 
stx

a1  and, in a similar way of the ratio 

stx
a2  according to Ω in case )(1 0PPn a ==  

and 8,0=µ  ( the auxiliary mass ma is a quarter 
of the mass m, which means ma = 0, 25 m).  

We can see that, by attaching the dynamic absorber, the primary system turns into a two degree-
of-freedom system 
having the specific pulsations 01 83,0 PP ⋅= and 02 34,1 PP ⋅= .  

Fig. 2. The variation curve 
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From the way in which the ratio 
stx

a1  varies, it results that the simple dynamic absorber is 

useful only when the pulsation of the disturbing force is actually constant. For the machines that 
have a varied speed, this type of absorber is useless, because, by attaching it, the primary system 
turns from a one-degree-of-freedom system into a two degree-of-freedom system with two 
resonances. In these cases it is necessary to use a dynamic absorber with dampers. If the 
auxiliary system has no damping devices, it functions as a dynamic absorber with a knot at the 
linking point. The auxiliary mass must be high enough so that its movement should not have 
very large amplitude. It is easy to determine the auxiliary mass for a dynamic absorber 
connected to the primary system in the point where the excitation applies.  

As the primary mass stays fixed, the force exerted by the absorber, for an amplitude u0
 of the 

movement of the auxiliary mass, is equal and opposed in direction to the exiting force F where:  

 0
2 umF a ⋅⋅= ω . (a) 

Taking into account that the pulsation is known, the mass and the movement amplitude, needed 
for counterbalancing the influence of the given exciting force, are determined by the relation (a) 

The elastic constant of the arch from the auxiliary system is determined under the condition that 
the frequency of this system should be equal to the one of the exciting force, which means: 

 
2ω⋅= aa mk . (b) 

Although the idea of harmonizing a dynamic absorber seems simple, there are some practical 
issues that make the precise harmonizing of a system very difficult. When the auxiliary mass is 
small as compared to the one of the primary system, the efficiency depends on the precision of 
harmonizing the frequencies. If the harmonizing is not perfect, the adding of the auxiliary mass 
can cause the composed system (made of the primary and the auxiliary systems together) to 
resonate with the exciting force.  

The dynamic absorber with viscous damper 

The scheme of a dynamic absorber with a damping device attached to the primary system 
without damping is presented in Figure 3. The differential equations for the movement of the 
two masses are:  
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where ca is the damping constant of the dynamic absorber. 
The solution of the system (12) being in the form (10), 

then: 11
.

xix ⋅⋅= ω ,  22
.

xix ⋅⋅= ω , 1
2

1
..

xx ⋅−= ω and 

2
2

2
..

xx ⋅−= ω  which are replaced in (12) to result: 
 

Fig. 3. The scheme of a dynamic 
absorber 
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 (13) 

From the relation above, by using the notes from the simple dynamic absorber and considering 

0Pm
c

a
a

a ⋅
=γ , we can obtain the ratio 

22
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, where:  

22
1 Ω−= nR  ; 2224

2 )1( nnR +Ω⋅+−Ω⋅= µ  ; aI γ⋅Ω=1  ; )1( 2
2 Ω−⋅⋅Ω= aI γ .  

The transmissibility that defines the ratio between the transmitted force and the disturbing force 
will have the expression: 
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When there is no damping, ( 0=aγ )for the auxiliary system, then the transmissibility is the 
same as: 

 
==

2
1

R
R

T
stx

a1

,  (15) 
and if the damping is infinite ( ∞=aγ ) the result is: 

 
21

1

Ω−
±=T

,  (16) 
and the oscillatory system can turn into a one degree-of-freedom system, whose mass is the sum 
of the masses m and ma. Figure 4 presents the variation curves of transmissibility according to 
the Ω ratio that can be obtained with the help of the relations (15) and (16).  

The two curves referring to the absence of damping ( 0=aγ ) and infinite damping ( ∞=aγ ) 
are intersected in the points P and Q with the abscissas ΩP and ΩQ which are fixed. All the 
curves of transmissibility pass through these points, regardless of the value of the damping ratio 

aγ  So, at the frequencies ΩP and ΩQ transmissibility does not depend on damping.  

As (15) can be written in the form:  
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=   (17) 

where: 2Ω=A  ; 2Ω=B ; 2
2RC =  ; )1( 22 Ω−⋅Ω=D , then the expression (17) does not 

depend on γa if the ratio of the coefficients is a constant, that is 
D
B

C
A

= . This condition leads to 

the relation: 222242222 ))1(()1()( nnn +Ω⋅+−Ω⋅=Ω−⋅Ω− µ  which has the roots PΩ  
and QΩ . (18) 
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The optimal harmonization of the absorber 

From Figure 4 we can deduce that the functioning of the dynamic absorber is becoming more 
efficient if transmissibility has the same value )( QP TT =  in points P and Q.  

When the coordinates of the two points are equal, we can say that the absorber is optimally 
harmonized. From QP TT =  and taking into account the relations (16), (17), (18), we deduce the 
relation: 
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which is the expression of transmissibility when the absorber is optimally harmonized.  

For a mass ratio 5,0>µ , the optimal damping coefficient, noted as aomγ , can be calculated with 
sufficient precision using the following relation: 

 
2

)1(3 µµγ −⋅⋅
=aom  (20) 

By introducing a damping system in the auxiliary system, the amplitudes of the primary system 
are diminished to pulsations that are equal to the specific ones. This is the reason why the 
dampers with an auxiliary mass are commonly used to diminish pressures and the amplitudes of 
the vibrations.  

From the two theoretical examples that are presented, simple as they are from the mechanical 
point of view, but very complex in means of calculations, we can infer that the harmonizing of 
these vibration absorbers becomes a very delicate mathematic problem when the structure is 
more complex (it has many masses). Keeping in mind that the C.R.D. programme determines 
also the maximum movement of the structural components, then the optimal parameters of a 
dynamic absorber which is attached to a structure can be easily determine by simulating these 
parameters with the C.R.D. programme. The procedure consists in giving various values to the 
parameters and keeping the combination for which the mass movements are the smallest. We 
will present further an example of harmonizing a dynamic absorber for a one-degree-of-freedom 
structure. The determination of the optimal parameters is achieved due to both the theory 
presented above and to the simulation through the C.R.D. programme.  
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A Calculation Example 

Given an oscillatory one-degree-of –freedom system (Figure 4) with the mass m = 50 Kg, the 
elastic constant k = 20 KN/m, which is under the stress of a harmonic disturbance force with the 
amplitude of 30 N. To this system, we attach a conventional dynamic absorber with viscous 
damping which causes the vibrations of the primary mass to be smaller than 8 mm, for every 
value the pulsation of the disturbance force might have. We are asked to determine the optimal 
parameters of this absorber. (To be continued in second part)  
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Optimizarea absorbitorilor dinamici (I) 

Rezumat 

Aceste două lucrări prezintă algoritmul general al răspunsului dinamic al unei structuri cu amortizare 
oarecare folosind metoda Galerkin. Acest algoritm a fost transpus pe calculator în programul care dă 
răspunsul dinamic (C.R.D.). Lucrarea prezintă o nouă metodă de determinare a parametrilor 
absorbitorilor dinamici de vibraţii, utilizând programul C.R.D.  


