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Abstract 

Generally speaking, when transporting natural gas through pipelines high quantities of water may occur, 
this giving the mixture a biphasic character. There are several theories on biphasic transport, but they 
have certain limits or are applied only using empirical coefficients whose valability is unnsure. The 
method proposed by the paper, even if using one of Baker’s ideas, is an exact one and does not require 
experimental numerical coefficients. The method uses hydraulic resistance coefficients for monofhasic 
flow in pipelines, no matter the type of movement (laminar or turbulent) or the hydraulic nature of the 
pipeline (flat, semi-flat or completely rugose). 
 
Key words: biphasic flow, pressure falls, Reynolds number, laminar, turbulent 
 

 

 

 

Introduction 
 

Over 50 years ago (in 1949) Lockhart and Martinelli presented, for the first time, a calculation 

relation for the pressure dropping of a biphasic flow in horizontal pipes. Although the method is 

empirical, it has a theoretical support. The method admits that the pressure is equal in the two 
biphasic pressure falls. Nevertheless, the results of the calculation never led to the equality of 

pressures. The method proposed makes possible the realization of this equality with a high 

precision. 

 

 

The Lockhart-Martinelli Method 
 

The pressure fall on each phase  
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, i is an index that is valid for the gasous phase ă (i = g) 

and for the liquid one (i = a), is calculated with the classical formula: 
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The average speed vi corresponding to phase i , is calculated according to the formula 



Silviu Al. Stan, Alecsandru Stan, Cornel Trifan 90 

  

ii

i
i

d

M

ρπ
=

2
4v  , (2) 

where di   is the equivalent diameter through which the phase indicated by i flows. We 

understand that di ≤ d, d being the interior diameter of the transportation pipe. The average 

speed of the phase, if it would flow by itself through the pipe, is of  
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Between the biphasic pressure gradient  
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In which iα has two values that refer to the slide between the phases. The m exponent may vary 

according to the two values of i. 

In the situation in which for the two phases the hydraulic strength coefficients are calculated 

according to Blasius formula, than 
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The authors have admitted, without specifying the rightness of the present method, that the 

flowing rhythms of the two phases are established according to Reynolds number, iRe  and its 

critical value is ( ) 1000≈crsiRe . The Reynolds number, siRe , is calculated according to the 

classical formula  
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sii
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d
Re

µ

ρ
=

v
, (6) 

µi being the dynamic viscid of i  phase from the mixture  

In the situation in which during the movement of the biphasic fluid siRe < 1000, the movement 

of the respective phase is flaky, and if siRe ≥ 1000, then the movement becomes turbulent. The 

conclusion is, consequently, that, without a theoretical or experimental part, the authors have 

admitted that the transition from flaky to turbulent movement takes place at this value of the 

Reynols number, equal to 1000. 

The pressure gradient 
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 ∆
 can be calculated by the means of formula (4), and the two 

gradients, respectively i =1 for the liquid and i =2 for the gaseous phase, satisfy the relation 
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In the situation in which aλ  şi gλ  is calculated according to Blasius, than  X parameter has the 

value of 
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The Silviu Stan Method 
 
In order to ground the Lockhart – Martinelli correlations, for the two phases, we will write the 

obvious relations: 

  00 =+τ−






 ∆
SP

l

p
A aa

b
a   (9) 

  00 =−τ−






 ∆
SP

l

p
A gg

b
g  , (10) 

for which τ0 represent the effort to the pipe’s wall for each phase, and iP  is the pipe’s perimeter 

in contact with the respective phase. Aa and Ag are the transversal sections through the pipe with 

section
4

2d
A π= , occupied by phases and obviously ga AAA += . 

By adding relations (9) and (10) we get 
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where, to simplify, for the efforts a0τ  and g0τ  the index representing the significance of the 

fact that they are used for the interior wall of the pipe has been omitted. These may be 

calculated with the help of 

  a
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v
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 (12) 

where aλ  and gλ  are the hydraulic strength coefficients that are calculated according to the 

Reynolds numbers aRe  and, respectively, gRe . Each of the Reynolds numbers is defined with 

the average speed va, or vg, and the interior diameter of the pipe d.  

The average speeds va and vg are calculated according to the mass flaws Ma and Mg 
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With the help of these measures, it results that the water fraction a has the following expression 
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where ρgN represents the density of the gases in normal conditions. 

Formula (9) can also be written under the form of 
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where Ha is an equivalent length between aria Aa and Ag. In a similar way, formula (10) can be 

written under the form of 
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The ration of the two members of the last equations leads to the relation  
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That can be also written under the form of 
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The Pa and Pg perimeters are written according to the  da and dg diameters, which renders  
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The index 1 attached above the ratio 

g

a

d

d
 indicated that this is the first iteration obtained as a 

consequence of the approximation in (15). We can introduce the symbols  

  gga Cdd = , aag Cdd = , (20) 
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On the other side we have: 

  ,C
A

A
g

g

a 2=  
2
a

a

g C
A

A
=  (22) 

That allow the expression of  Aa and Ag areas according to the total area A  
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The ratio ga / λλ  from the expression of  Cg and Ca is for the moment unknown, which 

determines also that Cg and Ca to be undetermined. 

The equation (15) in which dH a is neglected compared to aP  can be written under the form 

of  
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because 

  
d

C

dA

P a

aa

a
2144 +

== .  

The equation (16) can be similarly written under the form of 
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because now 
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From the previous relations we can understand that  
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The equation (19) is written under the equivalent form of 
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In the situation in which the two phases would flow by themselves through the pipe, the average 

speeds are considered to be vsa and vsg, and the strength  coefficients are to be  saλ  and, 

correspondingly sgλ . Between these two speeds we can establish the relations   
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In the case in which we introduce, just like Lockhart – Mertinelli, the defined parameter X in the 

relation 
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The double indexes sa and sg attached to the pressure gradient 






 ∆

l

p
 indicate that the latter is 

calculated for the situation in which just the liquid phase flows through the pipe (sa) and 

respectively, just the gaseous phase (sg).  

If we note down the sX   parameter equivalent to the X, namely 
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Between X and sX  the following relation exists 
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The immediate result of the (28) is 
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And in order to obtain the ration 

g

a

λ

λ
 we must fist do certain hypothesis related to the flowing 

rhythms, defined by the numbers  aRe , saRe , gRe  and sgRe . At the Reynolds number, Re, 

the indexes a, sa, g and sg have been added, just as in the case of the expressions of X and sX . 

Next, we take into consideration just two cases, namely that both numbers Rea and Reg are 

specific to flaky rhythm (Rea and Reg < 3000) and the flowing turbulences  (Rea and Reg ≥ 

3000). For the flaky movement, correspondingly Rea and Reg < 3000, it is surely simultaneously 

made and the in equations Resa and Resg < 3000. For the turbulent flowing (Rea and Reg ≥ 3000) 

it is possible that one of the two numbers Resa and Resg, or even both, to be inferior to the critical 

value of 3000. 

In order to simplify the thinking, we admitted that both pairs of Reynolds numbers indexed with  

a, sa, g and sg are simultaneously either smaller than 3000 or superior to that specific value. In 

the first case, because aλ , saλ  şi gλ , sgλ  are calculated according to Stokes relation  (λ·Re = 

64), we have the fallowing result 
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For the second situation when the four flowing rhythms are turbulent, the strength coefficients 

are calculated according to Blasius formula 
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=λ , and we immediately have 
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Consequently, we have for the flaky rhythms  
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And for the turbulent rhythms 
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Each ga d/d  ratio can be introduced in (14), which would lead to the equalities  
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for the flaky rhythms, and 
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for the turbulent rhythms.  

The two values of the ga / λλ ratio are written under the unique form  
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Where the F parameter is calculated according to the formula  
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and it depends mainly by the water ratio a. The values of the coefficients are  a = 5/6 and b = -

1/6 for the flaky movements and, respectively a = 20/21 and b = -1/21 for turbulent movements. 

The pressure gradient for the biphasic flow 
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If the gradient 
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 is expressed in a similar way as in the case of Lockhart – Martinelli 

method, namely  
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The m = 1 coefficient for the flaky movement and  m =1/4 for the turbulent movement. We 

notice the ratios between the pipe’s diameter and the ones equivalent for the  a and g phases are 
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Where m has the values previously notified (m = 1 for the flaky flows where 
2
aΦ  will be written 

down as 
2
allΦ  and 

2
gΦ  through 

2
gllΦ  and, for the turbulent flows, m = -1/4, where the 

parameters will be written down  as  
2
attΦ  and, respectively, 

2
gttΦ ). 

Because 1=agCC and 122 =agCC , it consequently results that the determination of the 

parameters  
2
aΦ  and 

2
gΦ  is not difficult to reach if at least one of it is given (Ca or Cg) . If we 

consider for instance , Cg given by the first relation (22) we can consequently write 
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On the other side, the ratio 
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The Ca value can be easily triggered. The two parameters Ca and Cg can be consequently easily 

triggered, because F can be calculated if the water ratio a is known. 
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The equivalent forms of the parameters 
2
aΦ  and 
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gΦ  can be traced down, namely 
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with the same notification that for the flaky movements m = 1, and for the turbulent movements 

m = 1/4. 

We can appreciate that the equivalent diameters da and dg obtained as a result of the calculations 

are  
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which represent the first iterative values of the diameters.  

The Ca and Cg measures can be easily established taking into consideration the fact that the 
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The right member can be written down under the fallowing forms  
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from where we can immediately understand that 
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


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
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λ⋅⋅ρ
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3

1

2

2
1

. (62) 

We consequently notice that the da and dg parameters can be easily obtained, values that are 

written down by means of da
(1)

 and,, correspondingly, dg
(1)

, which represents the number one 

order iteration of these diameters. 

If we write down by (i+1) the iteration of this order of the da and dg diameters, meaning da
(i+1)

 

and, respectively, dg
(i+1)

 than  

  
( ) ( ) ddd a

i
a

i
a ε+=+1

; 
( ) ( ) ddd g

i
g

i
g ε+=+1

 (63) 

εa and εg are two small parameters introduced for the  da diameter and, respectively, dg. Between 
εa and εg we can obtain a connection taking into account the existence of the relation  

  
( ) ( )

111 =++ i
g

i
a CC  (64) 
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where 
( )1+i
aC  and 

( )1+i
gC  are iteration of  i+1 order of the Ca and, respectively, of Cg, which 

signifies that, by replacing it in the ratio  
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 (65) 

and in a similar manner in 
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which allow to obtain 

  
( )

( )( )
( )( )[ ]i
g

i
a

i
a C

C

21

14

1

2
−⋅

+

=ε ; 
( )

( )( )
( )( )12

14

1

2
−⋅

+

=ε i
a

i
g

i
g C

C

 (67) 

When reaching these relations we took into account  

  
( )( ) ( )( ) 222

ddd i
g

i
a =+ . (68) 

The interrelation between εa and εg is given by the relations (67). We can obtain a similar 

expression starting from the obvious equality   

  
( )( ) ( )( ) ddddd g

i
ga

i
a =⋅ε−+⋅ε+

22
 

This results in the physical sense solution for 
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 (69) 

In the case in which 







ε+ε a

a
a d

d
2 present reduce values, for a reduce x argument, the 

approximate equality
2

11
x

x +≈+ , than εg given by the last formula is written in the 

following way  
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 (70) 

 

 

The SYLVY Calculation Programme 
 

On the basis of the theories presented above, in order to check the method we proposed, the 

Sylvy calculation programme has been elaborated and with its help we could calculate the 

pressure gradients for gases, respectively water phases, for different values of the gases flows 

and their humidity, for a 5 pipe. 
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For the calculation programme, we considered εa = 0.0000015, which means a very high 

precision of the calculations, because, at a diameter of d = 0.125 m the result was da = 0.11919 

and dg = 0.03766 m and the εg value for the last iteration was εg = 4,3091·10
-7

. 
 

 

Conclusions 
 

The main reason that leads us towards the conclusion that the method we propose is correct is 

the fact that the pressure gradients for the two phases have approximately the same values, 

which corresponds to the reality of the biphasic transportation pipes. 

In order to have a proper comparison of the three studying methods, Lockhart-Martinelli’s, 

Brill-Beggs’s and the method belonging to the Thermo technical Hydraulics and Deposits 

Engineering Departments from UPG Ploiesti, the calculation program offers, in the same 

conditions, the values of the pressure gradients calculated on the base  of corresponding 

algorithms for the respective methods.  

The calculation program has been tried on a 5 pipe that transports biphasic mixture with a flow 

of gases of 50 m3
N/h, 500 m3

N/h, 1500 m3
N/h, 2500 m3

N/h and 5000 m3
N/h, with different 

humidity. Synthetically, the results are presented in the following chart and diagram: 

Calculation 

method 
S. Stan 

Hydraulic 

Department 

Lockhart-

Martinelli 
Bell-Brigs 

Specific 
transportation 

conditions al

p







 ∆
/

gl

p







 ∆
 

bl

p







 ∆
 

bl

p







 ∆
 

bl

p







 ∆
 

QgN = 50 m
3
/h 

a = 0,75467 
76.71/75.92 67.77 87.85 103.17 

QgN = 500 m3/h 

a = 0,07547 
94.96/94.16 93.79 187.72 138.46 

QgN = 1.500 m
3
/h 

a = 0,02516 
127.21/126.41 147.25 375.03 216.58 

QgN = 2.500 m
3
/h 

a = 0,01509 
157.96/157.16 197.59 547.99 294.41 

QgN = 5.000 m
3
/h 

a = 0,00839 
222.44/221.64 294.49 875.10 467.57 
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Metodă nouă de calcul pentru curgerea bifazică 
gaze-apă prin conducte 

 
Rezumat 
 
În general, la transportul gazelor naturale prin conducte apar şi cantităţi mari de apă, ceea ce conferă 
acestui amestec un caracter bifazic. Există mai multe teorii privind transportul bifazic, dar, acestea au 
anumite limite sau sunt aplicabile utilizând coeficienţi empirici ai căror valabilitate este incertă. Metoda 
propusă în lucrare, deşi utilizează o idee a lui Baker, este exactă şi nu necesită utilizarea unor coeficienţi 
numerici de natură experimentală. În cazul metodei propuse sunt utilizaţi coeficienţi de rezistenţă 
hidraulică pentru curgerea monofazică prin conducte indiferent de caracterul mişcării (laminar, 
turbulent) sau natura hidraulică a conductei (netedă, seminetedă sau complet rugoasă). 
 


