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Abstract 

This paper is a sequel of the work [1] where the notions of “physical size” and its “measure” are cleared 

up, and the use of the term “measure” in metrology, not only to appoint the measure standard, but also 

for the quantitative expression of a physical size, obtained experimentally or by calculation, is proposed. 
In the present work, as a result, the properties of the measure of the physical sizes on the basis of its 

general expression are determined. These properties will be used in the framework of future papers. 
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Introduction 

The present paper is a sequel of ideas regarding the physical sizes and their measures, expressed 

in the work [1] by the author (see also [2]).  
 

The physical sizes represent the measurable common properties of the different classes of 

objects or processes, occurring in nature or created by man.  
 

The properties of the objects and processes are phenomena [1].  
 

Phenomena are external manifestations of objects and processes that are the manifestations of 

their essence [1]. They may be empirically find out and experimentally emphasized.  
 

Therefore, the properties of the objects and processes can be experimentally determined by 

measuring.  
 

The result of the measuring operation of a physical size in certain conditions and accuracy is the 

measure of the respective physical size at the measuring moment [1]. 
 

In the mentioned paper [1], the use of the term “measure” in metrology,both to appoint the 

result of the measuring action/operation, the materialized conventional unit (the measure 

standard), indication (of a measuring means) – see [3] and [4] –, and also for the quantitative 

expression of a physical size, generally, determined even by calculation as a product of a 
number (called numerical value of the measure) and the measure unit, is suggested. This is 

argued by the existence of these metrological meanings of the term “measure” in world-wide 

languages, as English, French and German. The last above defined meaning of the term 

“measure” may be adopted by extension even if it does not appear well-defined in the analysed 

languages [1].  
 

In this way, as it was shown in [1], the measure of a physical size M , noted with µ(M), 

determined either by measuring or by calculation, represents the product of the measure 

numerical value w(M), and the considered unit of measure [M], in accordance with the relation: 
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                                                                ( ) ( ) [ ]MMwM ⋅=µ ,                                                     (1) 

where µ  is the operator of measure, and w(M)∈R. 

If w(M) = 1, then  

                                                              ( ) [ ] ( )MMM 1µµ ≡= ,                                                    (2) 

where µ1(M) is the unitary measure/the unit of measure of the physical size M, and µ 1 is the 

unitary measure operator.   

The Properties of the Measure  

Further, the measure properties of a physical size on the basis of the general measure expression 

having the shape (1) are determined (see also [2]).  
 

● The relation of biunique correspondence between the multitude of the measures, having the 

same unit of measure, of a physical size, and the multitude of the real numbers. Let be Μ[M] the 

multitude of the measures µ(M) of a physical size M, with the same unit of measure [M], and R 

the multitude of the real numbers. As w(M)∈R, to any real number will correspond a measure of 
a physical size M, and to any measure having the same unit of measure of the physical size M, 

will correspond a real number.  
 

Observation 1. Generally, the sign of the measure of a physical size is depending on the scale 

chosen for the measure of that size, on the considered reference point for measure zero, 

respectively, that is it depends on the reference physical size, or it results in accordance with the 

definition of the physical size. In this way, it is known that temperature has positive and 

negative measures on the Celsius scale (therefore, the measure Celsius, or the relative measure 

of the temperature has positive or negative values), but the Kelvin measure or the 

thermodynamic/absolute measure of the temperature has only positive values. Also, the altitude 

has both positive and negative measures, if it is taken into in consideration a scale where the 

measure zero will correspond to sea level. Instead, the elongation represents a size which may 

have only positive measures, while the contraction has measures whose numerical values are 

only negative if both of the sizes are defined by means of the following relation:   

                                                                      0lll −=∆ ,                                                              (3) 

where l0 is the initial length and l the final length. A strain gauge connected to a strain-

measuring instrument indicates positive values of specific deformation in the case where the 

part on which it is applied will support on elongation and negative values if the respective part 

contracts. Also, the acceleration, according to its definition, is a size which may have both 

positive measures (in accelerated motion) and negative measures (in slowing motion).  
 

● The theorem of order relation of the measures of a physical size. Two measures of a physical 

size are equal if and only if they have the same unit of measure and their numerical values are 

equal: 

                           ( ) ( ) ( ) ( ){ } [ ]( ) [ ]( ) ( ) ( ) ( ) ( ){ }MwMwMMMM 212121  and µµ ==⇔= ,                     (4) 

and they are unequal if and only if, being expressed dependent on the same unit of measure, 

their numerical values are unequal in the same sense:  

                              ( ) ( ) ( )( ){ } ( ) ( ) ( ) [ ]( ) [ ]( ){ }212121
  µµ MMMwMwMM =<⇔<                          (5) 

and 

                             ( ) ( ) ( )( ){ } ( ) ( ) ( ) [ ]( ) [ ]( ){ }212121
  µµ MMMwMwMM =>⇔>                          (6)   

or if, having the same numerical value, the units of measure are unequal in the same sense as the 
measures themselves:  

                            
( ) ( ) ( )( ){ } [ ]( ) [ ]( ) ( ) ( ) ( )( ){ }MwMwMMMM

212121
  µµ =<⇔<                          (7) 
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and 

                            ( ) ( ) ( ) ( ){ } [ ]( ) [ ]( ) ( )( ) ( ) ( ){ }MwMwMMMM
212121

  µµ =>⇔> .                        (8) 
 

● The theorem of completeness. Any row of intervals of the numerical values of a measure (of a 

physical size M) ( )'
ii w,w , with ( ) ( )'

ii
'
ii w,ww,w ⊂++ 11 , defines uniquely a measure µ(M), whose 

numerical value w(M)∈R has the property  

                                                   ( ) ( ) ( )MwMwMw '
ii ≤≤ , ∀i∈N,                                              (9)  

( )'
ii w,w  being the accuracy interval which depends on the measuring instrument (and implicitly 

on the adopted unit of measure), so that  

                                                    ( ) ( ) ( )MMM '
ii µµµ ≤≤ , ∀i∈N.                                             (10)                                            

It is proved on the basis of property/theorem of completeness of the real number multitude and 

on the basis of biunique correspondence relation among the measure multitude, with the same 
unit of measure of a physical size, and the multitude of real numbers.  
 

● The inverse proportionality between the numerical value of the measure and the unit of 

measure. For a certain accuracy of measuring carried out at a given moment, that is, for a 
certain measure of a physical size, µ(M), the numerical value of the measure is inversely 

proportional to the used measure unit:  

                                                                ( )
( )

[ ]M

M
Mw

µ
= .                                                          (11) 

● The theorem of comparison of two measures of a physical size. If two unequal measures of a 

physical size are compared, the smaller the small measure is, the more it divides the great 

measure. In this way, if µ
(1)

(M) and µ
(2)

(M) are two unequal measures of M, and if µ
(1)

(M) is of λ 
times smaller than µ(2)(M), that is  

                                                         ( ) ( )
( ) ( )

λ

µ
µ

2
1 M

M = , λ∈R+,                                               (12) 

then, by using the expression of measure for µ
(1)

(M), for which the unit of measure [M] is taken 

into consideration, will result:  
( )( ) ( ) ( ) [ ]MMwM ⋅⋅= λµ 12 , 

that is  

                                                               
( ) ( )

( )
[ ]M

w

M
⋅= λ

µ
1

2

.                                                      (13) 

● The consequence of the theorem of comparison of two measures of a physical size (of making 

a unit of measure from another unit). Any unit of measure may result either by multiplying, or 

dividing by another unit of measure. This assertion is expressed in the following way: any unit 
of measure may be a measure with another unit of measure (which will divide the respective 
measure). In this way, in accordance with the measure definition, the left-hand member in the 

equality (13) is a unit of measure noted by [M]
(2)

 and the relation (13) becomes 

                                                            [ ]( ) [ ]MM ⋅= λ
2

, λ∈R+.                                                  (14) 

Generally, if [ ]M≡1µ  is a (basic) unit of measure for any physical size, then there is λi∈R+, 

____

n,i 1= , so that, other units of measure for the respective size in the shape  

                                                                   ( )
11 µλµ ⋅= i

i                                                             (15) 

or  

                                                               [ ]( ) [ ]MM i

i
⋅= λ                                                           (16) 
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are obtained. 
 

For example, “Near by stood six stone jars, the kind used by the Jews for ceremonial mashing, 

each holding by two or three measures” (John’s Gospel, 2, Wedding in Cana, 6), “a measure 

having about 39 litres” (Idem). Therefore, a measure represents the capacity of a stone jar (see 

also [1]), which may be a unit of measure, representing other two or three measures/units of 

measure, each of them having 39 litres.  
 

Observation 2. Usually, a new unit of measure is chosen, which is multiple or submultiple of 

another unit of measure (of a type-unit or a basis one). It is again mentioned that the 

multiple/submultiple of a type-unit of measure represents a unit of measure, which is a whole 
number times greater/smaller than the type-unit.  
 

Observation 3. The division of the unit of measure, in fact is a method used for measurements, 

which suggested a construction mode of real numbers (as decimal fractions having an infinity of 

decimals) [8]. In this way, in order to measure any size as possible more accurately, the units of 

measure are used in turn  

                                                          ( )
( )

1

1
1

1
10

µ
µ

−
=

i

i , i=1, 2, ...,                                                    (17) 

theoretically represented by an infinite row, in the way that each of the successive measurement 

provides in turn a new decimal of the numerical value of the respective size measure. 

Theoretically, the row of these decimals is infinite. In practice, the numerical value of measure 

is expressed/approximated by a fraction with a finite number of decimals, according to the 

wanted accuracy; for example, a third from the length of a segment of 16 mm represented by 

micron accuracy (as a unit of measure) or valuable, in the decimal system, with an accuracy of 

10
-3

 is  

mm3335mm
3

1
5

3

mm16
⋅≈⋅=

⋅
, . 

Observation 4. Other examples may be even the definitions of some units of measure, adopted 

in the course of time (see [5]÷[7] and [9]), as: the meter definition adopted at the 11
th

 General 

International Conference for Measures and Weights (GICMW) from October 1960, for which as 

a base standard of length was considered the wave length in vacuum, of  0,605 780 21 µm, of 

the orange spectral radiation of the Krypton atom 86 emitted by transition between the energy 

levels 2p10 and 5d5 (“meter is the length equal to 1 650 763,73 length in vacuum of radiation 

corresponding to transition between the energy levels 2p10 and 5d5 of the Krypton atom 86”); 

the definitions of second (the initial one: “the fraction 1/86 400 in a medium solar day”; the 

second, decided by the International Committee of Measures and Weights in 1956 and ratified 

in 1960 by the 11
th

 GICMW: “the fraction 1/31 556 925,974 7 in the tropical year for 1900 
January 0 to 12 hours of the ephemerid time”; the third was decided by 13th GICMW in 1967: 

“duration of 9 192 631 770 periods of the radiation corresponding to transition between the two 

hyperfine levels of energy of the fundamental state of the Caesium atom 133”).   
 

● Invariance of measure in case of changing the unit of measure. The measure of a physical size 

is invariably in case of changing the unit of measure that is written as  

                                                   ( )( ) [ ]( )
.constMMw

ii
=⋅ ,  ∀i∈N,                                            (18) 

i being the number of order of the measure.  

For example,  

( ) kN1 566612N61566 12kgf281 1µ ⋅=⋅=⋅= ,,F . 

Demonstration. Let be   

( ) ( )( ) [ ]( )11µ MMwM ⋅=  

and let be [M](2) an other unit of measure for M, so that  
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[ ]( ) [ ]( )12
  MM < .                                                      

Then, as unequal measures, there is λ > 1, so that  

 [ ]( ) [ ]( )

λ

1
2 M

M = . 

Because [M]
(2)

 is inversely proportional to w
(2)

(M), will result that [M]
(2)

 divides λ times more 

µ(M) than [M]
(1)

 does, that is  
( )( ) ( ) ( )MwMw 12 λ ⋅= .  

Therefore 

( )( ) [ ]( ) ( ) ( )
[ ]( )

( ) ( ) [ ]( ) ( )MMMw
M

MwMMw µ
λ

λ
11

1
122

=⋅=⋅⋅=⋅ . 

q. e. d. 
 

Demonstration may be simpler made on the basis of the following reasoning: as the numerical 

value of measure will result by dividing it with the unit of measure, also the unit of measure, as 

a measure itself, can be divided by another unit of measure, and so on, that is  

 ( ) ( ) ( ) [ ]( ) ( )( ) [ ]( ) ( ) ( ) [ ]( )
...MMwMMwMMwM =⋅=⋅⋅=⋅=

222

1
111

λµ  

                         ( ) ( ) [ ]( ) ( )( ) [ ]( ) ( ) ( ) [ ]( )111
λ

+++
⋅=⋅⋅=⋅=

iii

i
iii

MMwMMwMMw... , 

where 

( ) ( ) ( ) ( ) i
ii MwMw λ1

⋅=
+  and 

[ ]( )

[ ]( )i

i

i
M

M
1

λ
+

= , 
____

n,i 1= . 

● Consequence 1 (of the invariance of measure in case of changing the unit of measure), of the 

expression of a measure depending on any unit of measure of the physical size. Any measure of 

a physical size determined by a certain unit of measure may be written depending on any other 
unit of measure of the respective physical size.  

Really, if µ(M) is a measure of the physical size M, determined with any unit of measure [M](i), 
____

n,i 1= , that is  

( ) ( ) ( ) [ ]( )ii MMwM ⋅=µ , 

then another unit of measure [M] may be chosen, in the way that (according to the property of 

invariance)  

      [ ]( ) [ ]MM i

i
⋅= λ , 

and the respective measure becomes  

                                                  ( ) ( )( ) [ ]MMwM i
i ⋅⋅= λµ , 

____

n,i 1= .                                          (19) 

● Consequence 2 (of the invariance of measure in case of changing the unit of measure), of the 

proportion of the numerical value ratio and of the inverse one of the units of measure of the 

same measure. For one and the same measure, the ratio of the numerical values is inversely 

proportional to the ratio of the units of measure or the ratio of numerical values and the inverse 

one of the units of measure build up a proportion:  

                                                                   
( )

( )

( )

( )i

i

w

w

1

1
1

1 µ

µ
= .                                                             (20) 

● Consequence 3 (of the invariance of measure in case of changing the unit of measure), of 

increasing the measurement accuracy by decreasing the unit of measure. By choice of a smaller 

and smaller unit of measure,  

( ) ( )1
11 µ  µ <

i , 
____

n,i 2= , 
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the numerical values of the measure become greater and greater,  

( ) ( )1  ww i
> , 

____

n,i 2= , 

according to the relation:  

( ) ( )
( )

( )i

i ww
1

1
11

µ

µ
⋅= ,  

which increases the measurement accuracy (see observation 3). For example, if ( )i

1µ , 
____

n,i 2= , is 

chosen, according to relation (17), then  

( ) ( )1110 ww ii
⋅=

− , 
____

n,i 2= . 

● The principle of algebraic summation of the physical sizes. Only the physical sizes having the 

same nature/being the same kind are algebraically summated.  
 

● The property of value additivity. The algebraic sum measure of the physical sizes having the 

same nature, for which the same unit of measure is used, is equal to the product of algebraic 

sum of the numerical values of the respective measures and the adopted unit of measure. 
Therefore 

                                                        ( ) [ ]MMwM
n

i

i

n

i

i ⋅=







∑∑

== 11

µ ,                                               (21) 

if Mi, 
___

n,i 1= , they are physical sizes having the same nature and [M] = [Mi], 
___

n,i 1= . 

Demonstration. As Mi, 
___

n,i 1= , they are measures of the same nature, they can be separately 

measured and their measures summated, that is  

( )∑∑
==

=






 n

i

i

n

i

i MM
11

µµ . 

But, in accordance with the measure definition: 

( ) ( ) [ ]iii MMwM ⋅=µ , 

is obtained  

( ) ( ) [ ]∑ ∑
= =

⋅=
n

i

n

i

iii MMwM
1 1

µ . 

Mi, 
____

n,i 1= , being sizes of the same nature, the same unit of measure may be used. Let be [M] 

this unit of measure:  

[ ] [ ] [ ] [ ] [ ]MM...M...MM ni ====== 21 . 

Further, will result  

( ) [ ] ( ) [ ]MMwMMw
n

i

ii

n

i

i ⋅=⋅ ∑∑
== 11

. 

Taking into account the previous relations,  

( ) ( ) [ ] ( ) [ ]MMwMMwMM
n

i

ii

n

i

i

n

i

i

n

i

i ⋅=⋅==







∑∑∑∑

==== 1111

µµ  

is written. 
q. e. d. 

 

Observation 5. The property of the value additivity will express the fact that it makes no sense 

the application of the unit measure operator to the algebraic sum of the physical sizes having the 
same nature, for which the same unit of measure is adopted. 
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Observation 6. Because, according to the measure definition,  

[ ]MMwM
n

i

i

n

i

i ⋅







=








∑∑

== 11

µ  

is written, taking into account the equality (21), will result  

                                                           ( ) 







= ∑∑

==

n

i

i

n

i

i MwMw
11

.                                                   (22) 

● Consequence 1 (of the property regarding the value additivity), in case of variation measure 

of a physical size. From point of view of measure, a variation of a physical size takes place only 

by variation of the numerical value of its measure. This thing is expressed by the following 
relation  

                                                          ( ) ( ) [ ]MMwM ⋅∆=∆µ .                                                    (23) 

But, according to (22), the equality  

                                                               ( ) ( )MwMw ∆=∆                                                         (24) 

is true. 
 

● Consequence 2 concerning the property of the value additivity in case of infinitesimal 

measure. As a result of the consequence 1, only the numerical value of a measure can tend to 

zero; in this way:  

                                      ( ){ } ( ){ } ( ){ }00µ0µ →∆⇔→∆⇔→∆ MwMM ,                               (25) 

that is the variation measure of a physical size will tend to zero, only if the measure variation of 

that size tends to zero, the numerical value of that variation measure of the physical size tends to 

zero, respectively. 
 

Therefore, the affirmation “Variation of a physical size tends to zero” is not correct. Instead, it 

is correct to say: “The physical size is not changed”, “The variation measure of a physical size 
tends to zero”, or “The measure variation of a physical size tends to zero”, respectively.  
 

● The property of the extended value additivity. (The algebraic summation of the physical sizes 

having the same nature but different units of measure.) Also the physical sizes having the same 
nature/being the same kind, but different units, are algebraically summated.  

Really, if µ
(i)

(Mi), 
___

n,i 1= , are the measures of those n physical sizes having the same nature, 

which are determined with different units of measure [Mi]
(i)

, that is  

( ) ( ) ( ) [ ]( )i

ii
i MMwM ⋅=µ , 

then, passing to the same unit of measure [M] for all the measures, by means of the relation 
having the shape (19), which becomes  

( ) ( ) ( )( ) [ ]MMwM i
i

ii
i

⋅⋅= λµ , λi∈R+, 

and by using the property of value additivity, will result:   

                                               
( ) ( ) ( ) ( ) [ ]MMwM

n

i

i
i

i

n

i

i
i

⋅







⋅= ∑∑

== 11

λµ .                                       (26) 

Conclusions 

In this paper the discussion from [1], regarding the physical size and its measure, is continued. It 

is reminded that the term of “measure” is used by the author – despite of distinction made in [3] 
and [4] – both in order to designate the result of measuring action/operation, the materialized 
conventional unit (measure standard), indication (a measuring instrument) and for the 
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quantitative expression of a physical size, generally, determined even by calculation, as a 

product of a number (called numerical value of the measure) and the unit of measure.  
 

In this way, in the present work, the properties of measure of a physical size on the basis of its 
general expression having the shape (1) are determined: the biunique correspondence relation 

among the multitude of the measures, with the same unit of measure, of a physical size and the 

multitude of real numbers; the theorem of the relation of order in case of measure of a physical 
size; the theorem of completeness; the inversely proportionality between the numerical value of 
measure and the unit of measure; the theorem of comparison of two measures of a physical size 

and its consequence; the invariance of measure in case of changing of the measure unit and its 
three consequence; the principle of algebraic summation of the physical sizes; the property of 

the value additivity and its consequences; the property of extended value additivity. 
 

These properties will be used, in the future in the frame of other works, in order to express the 
measure of a physical size determined by a relation among other sizes and to emphasize a series 

of other aspects concerning the physical size and its measure.  
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Proprietăţile măsurii unei mărimi fizice 

Rezumat 

Acest articol este continuarea lucrării [1], în care se clarifică noţiunile de „mărime fizică” şi de 

„măsură” a acesteia şi se propune utilizarea termenului „măsură” în metrologie nu numai pentru a 

desemna etalonul de măsură, dar şi pentru expresia cantitativă a unei mărimi fizice, în general, 

determinată experimental sau  prin calcul. Ca urmare, în lucrarea de faţă se determină proprietăţile 

măsurii unei mărimi fizice pe baza expresiei sale generale. Aceste proprietăţi vor fi utilizate în cadrul 

unor lucrări viitoare. 


