Research Concerning the Positional Model of the Lynx 6 Robot System

Dorin Bădoiu

Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti
e-mail: badoiu@mail.upg-ploiesti.ro

Abstract

The paper presents a method that permits the design of the positional model of the Lynx 6 robot system, that is, the calculus of the relative position and orientation between the component modules. With this end in view, Khalil-Kleinfinger parameters have been used. The verification of the results obtained with the positional model has been done using the robot arm interactive operating system Lynxmotion Rios SSC-32 V1-04 which controls the robot system. Finally, some simulation results are presented.

Key words: robot, joints, position, orientation, trajectory

Introduction

Generally, the robots are characterized by an automatic and programmable running, one of their more used task being to substitute the human operator in different operations of manipulation that are part of industrial process. In many cases, the analysis of this kind of tasks that the robots have to do, requires the design of the positional model that permits the calculus of the relative position and orientation between the component modules and between the grasping module and the base of the robot. These models have to be very precise and, generally, they are verified using the control system of the robot.
In this paper it is presented a method that allows the positional model design of the Lynx 6 robot system (fig. 1). In this scope, Khalil-Kleinfinger parameters have been used. The verification of the model has been done using the robot arm interactive operating system Lynxmotion Rios SSC32 V1-04 which controls the robot system.

Theoretical Considerations and Verification Results

In figure 1 , the cinematic scheme of the mechanism of the Lynx 6 robot is presented. The systems of coordinates $\left(T_{i}\right), i=\overline{0,5}$, has been attached to each component module $i, i=\overline{0,5}$, using the Khalil-Kleinfinger method [4] (the module zero is the fixed part of the mechanism).

In this case, the systems of coordinates $\left(T_{i}\right)$ attached to each component module of the robot, are chosen in the following way: the axis $\left(O_{i} z_{i}\right)$ has the direction of the joint $\left(C_{i}\right)$ between the
modules $i-1$ and i, the axis $\left(O_{i} x_{i}\right)$ has the direction of the common perpendicular between the axes $\left(O_{i} z_{i}\right)$ and $\left(O_{i+1} z_{i+1}\right)$, the axis $\left(O_{i} y_{i}\right)$ is chosen in such a way that the system of coordinate (T_{i}) be an right-orthogonal one. In order to simplify the presentation of the cinematic scheme, the ($O_{i} y_{i}$) axes have not been represented.

The fixed system of coordinate $\left(T_{0}\right)$ is chosen so that it coincides with $\left(T_{1}\right)$ when $q_{1}=0, q_{1}$ being the generalized coordinate corresponding to the joint $\left(C_{1}\right)$.

The system of coordinates $\left(T_{5}\right)$, attached to the last component module of the robot, is chosen in the following way: the axis $\left(O_{5} x_{5}\right)$ will be collinear with the axis $\left(O_{4} x_{4}\right)$ when $q_{5}=0$ (q_{5} is the generalized coordinate corresponding to the active joint $\left(C_{5}\right)$) and the origin O_{5} is chosen at the intersection of the axes $\left(O_{4} x_{4}\right)$ and $\left(O_{5} z_{5}\right)$.

Fig. 1. Lynx 6 robot mechanism

The systems of coordinates $\left(T_{i+1}\right)$ and $\left(T_{i}\right), i=\overline{0,4}$, are relatively positioned using four parameters (fig. 2): the angle α_{i+1} between the axes $\left(O_{i} z_{i}\right)$ and ($O_{i+1} z_{i+1}$), the distance d_{i+1} between the same axes, the angle θ_{i+1} between the axes $\left(O_{i} x_{i}\right)$ and ($O_{i+1} x_{i+1}$) and the distance r_{i+1} between $\left(O_{i} x_{i}\right)$ and $\left(O_{i+1} x_{i+1}\right)$, measured on the positive direction of the axis $\left(O_{i+1} z_{i+1}\right)$.

Fig. 2. Khalil-Kleinfinger parameters
The homogeneous matrix corresponding to the relative position and orientation of the systems of coordinates $\left(T_{i+1}\right)$ and $\left(T_{i}\right), i=\overline{0,4}$, has the following general form [4]:

$$
\begin{align*}
{ }^{i} T_{i+1}= & {\left[\begin{array}{cc}
{ }^{i} R_{i+1} & { }^{(i)} O_{i} O_{i+1} \\
0 & 1
\end{array}\right]=\operatorname{Rot}\left(x, \alpha_{i+1}\right) \cdot \operatorname{Trans}\left(x, d_{i+1}\right) \cdot \operatorname{Rot}\left(z, \theta_{i+1}\right) \cdot \operatorname{Trans}\left(z, r_{i+1}\right)=} \\
& =\left[\begin{array}{cccc}
\cos \theta_{i+1} & -\sin \theta_{i+1} & 0 & d_{i+1} \\
\cos \alpha_{i+1} \cdot \sin \theta_{i+1} & \cos \alpha_{i+1} \cdot \cos \theta_{i+1} & -\sin \alpha_{i+1} & -r_{i+1} \cdot \sin \alpha_{i+1} \\
\sin \alpha_{i+1} \cdot \sin \theta_{i+1} & \sin \alpha_{i+1} \cdot \cos \theta_{i+1} & \cos \alpha_{i+1} & r_{i+1} \cdot \cos \alpha_{i+1} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{1}
\end{align*}
$$

where: ${ }^{i} R_{i+1}$ is the rotation matrix corresponding to the relative orientation of the systems of coordinates $\left(T_{i+1}\right)$ and $\left(T_{i}\right)$, the homogeneous transformation matrices of type Rot correspond to rotations along the axes of the system of coordinates $\left(T_{i}\right)$ and the matrices of type Trans correspond to translations along the axes of $\left(T_{i}\right)$.

The generalized coordinates $q_{i}, i=\overline{1,5}$, corresponding to the movement at the active joints $\left(C_{i}\right)$, $i=\overline{1,5}$, level will be the angles θ_{i} because all $\left(C_{i}\right)$ are of rotation.

In table 1 the values corresponding to the Khalil-Kleinfinger parameters are presented.

Table 1. The values of the Khalil-Kleinfinger parameters

i	α_{i}	d_{i}	θ_{i}	r_{i}
1	0	0	q_{1}	0
2	-90°	0	q_{2}	0
3	0	b	q_{3}	0
4	0	c	q_{4}	0
5	-90°	0	q_{5}	0

By applying the relation (1) and taking into account the values of the Khalil-Kleinfinger parameters in table 1 , the following expressions for the homogeneous matrices ${ }^{i} T_{i+1}, i=\overline{0,4}$, are obtained:

$$
\begin{align*}
& { }^{0} T_{1}=\left[\begin{array}{cccc}
c 1 & -s 1 & 0 & 0 \\
s 1 & c 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad{ }^{1} T_{2}=\left[\begin{array}{cccc}
c 2 & -s 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s 2 & -c 2 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad{ }^{2} T_{3}=\left[\begin{array}{cccc}
c 3 & -s 3 & 0 & b \\
s 3 & c 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \\
& { }^{3} T_{4}=\left[\begin{array}{cccc}
c 4 & -s 4 & 0 & c \\
s 4 & c 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad{ }^{4} T_{5}=\left[\begin{array}{cccc}
c 5 & -s 5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s 5 & -c 5 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] . \tag{2}
\end{align*}
$$

where:

$$
\left\{\begin{array}{l}
s i=\sin q_{i} \tag{3}\\
c i=\cos q_{i}
\end{array} \quad i=\overline{1,5}\right.
$$

The position of the reference point P belonging to the grasping device (fig. 2) can be determined with the following relation:

$$
\begin{equation*}
{ }^{(0)} O_{0} P={ }^{0} T_{5}{ }^{(5)} O_{5} P \tag{4}
\end{equation*}
$$

where: the homogeneous matrix ${ }^{0} T_{5}$ is given by:

$$
\begin{equation*}
{ }^{0} T_{5}={ }^{0} T_{1} \cdot{ }^{1} T_{2} \cdot{ }^{2} T_{3} \cdot{ }^{3} T_{4} \cdot{ }^{4} T_{5} \tag{5}
\end{equation*}
$$

and the position vector ${ }^{(5)} O_{5} P$, expressed in a homogeneous form [1], has the following expression:

$$
{ }^{(5)} O_{5} P=\left[\begin{array}{llll}
0 & 0 & e+d & 1 \tag{6}
\end{array}\right]^{\mathrm{T}}
$$

The values of the geometric parameters are: $a=79 \mathrm{~mm} ; b=120.66 \mathrm{~mm} ; c=120.65 \mathrm{~mm}$; $d+e=144.9 \mathrm{~mm}$.

The relations above have been transposed in a computer program which allow to calculate very easy and precisely the positional parameters of the Lynx 6 robot.

The results obtained with the computer program have been verified using the robot arm interactive operating system Lynxmotion Rios SSC-32 V1-04 which controls the robot system. The relations between the generalized coordinates $q_{i}, i=\overline{1,5}$, used in the positional model and those used by the controller and noted with $q_{i}^{r}, i=\overline{1,5}$, are the following:

$$
\left\{\begin{array}{l}
q_{1}=-q_{1}^{r} \tag{7}\\
q_{2}=-90^{\circ}-q_{2}^{r} \\
q_{3}=90^{\circ}-q_{3}^{r} \\
q_{4}=-90-q_{4}^{r} \\
q_{5}=q_{5}^{r}
\end{array}\right.
$$

Also, the relations between the coordinates of the reference point P calculated with the relation (4) and those given by the controller and noted with x Pos, y Pos and z Pos are:

$$
\left\{\begin{array}{l}
{ }^{(0)} x_{P}=x \operatorname{Pos} \tag{7}\\
{ }^{(0)} y_{P}=-z \operatorname{Pos} \\
{ }^{(0)} z_{P}=y \operatorname{Pos}-a
\end{array}\right.
$$

In table 2 some results obtained with the controller are presented.

Table 2. Results obtained with the controller

$q_{1}^{r}\left[{ }^{\circ}\right]$	0.09	30	44.95	-44.95	60.09
$q_{2}^{r}\left[{ }^{\circ}\right]$	0.09	0.09	-30	30	30
$q_{3}^{r}\left[{ }^{\circ}\right]$	0.01	59.9	45.01	24.83	-44.98
$q_{4}^{r}\left[{ }^{\circ}\right]$	0.09	-30	10	-30	40.9
$q_{5}^{r}\left[{ }^{\circ}\right]$	0.07	0.07	19.97	-15.03	5.01
x Pos $[\mathrm{mm}]$	265.29	160.73	210.05	99.5	93.43
y Pos $[\mathrm{mm}]$	200.34	376.52	275.94	342.95	213.74
z Pos $[\mathrm{mm}]$	0.42	92	217.7	-99.34	162.42

In table 3 the results obtained with the computer program are presented.

Table 3. Results obtained with the computer program

${ }^{(0)} x_{P}[\mathrm{~mm}]$	265.359	160.780	210.104	99.555	93.018
${ }^{(0)} y_{P}[\mathrm{~mm}]$	-0.4168	-92.826	-217.723	99.382	-161.697
${ }^{(0)} z_{P}+a[\mathrm{~mm}]$	200.351	376.563	276.002	342.967	213.647

Conclusions

The paper presents a method that allows the positional model achievement of the Lynx 6 robot system. Khalil-Kleinfinger parameters have been used for positional analysis. The verification of the model has been done using the robot arm interactive operating system Lynxmotion Rios SSC32 V1-04 which controls the robot system. The methodology presented, which has been transposed into a computer program, can then be used for an optimum design for generating different trajectories in the corresponding work space.

References

1. B ă d oi u, D. - Analiza structurală şi cinematică a mecanismelor, Editura Tehnică, 2001.
2. B ădoiu, D. - Analiza dinamică a mecanismelor şi maşinilor, Editura Didactică şi Pedagogică, Bucureşti, 2003.
3. Craig, J. J. - Introduction to robotics: mechanics and control, Addison-Wesley, 1986.
4. Dombre, E., Khalil, W. - Modélisation et commande des robots, Ed. Hermès, Paris, 1988.

Cercetări privind modelul pozițional al sistemului robot Lynx 6

Rezumat

Articolul prezintă o metodă care permite obținerea modelului pozițional al sistemului robot Lynx 6. Parametrii Khalil-Kleinfinger au fost folosiți pentru analiza pozițională. Verificarea modelului s-a realizat folosind sistemul de operare interactiv Lynxmotion Rios SSC-32 V1-04 care controlează sistemul robot. Metodologia prezentată, care a fost transpusă într-un program de calculator, poate fi apoi folosită pentru proiectarea optimă a diferitelor traiectorii în spațiul de lucru corespunzător.

