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Abstract 
 
In the paper, it is presented a calculus methodology for the proper circular frequencies of a rod pumping 
unit, using the finite elements method. It is established the minimum number of elements in order to 
minimize the error between the finite element results and those obtained from the general theory of axial 
vibrations of beams with continuous mass. The results obtained are analysed in a calculus example. 
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Theoretical Considerations 
 

The fundamental circular frequency is an important characteristics of the structure that allow the 

selecting of the optimal technological parameters in order to have a goodl function of the entire 

equipment. 

The proper circular frequencies of the free vibrations of a uniform beam, p1, can be expressed 

by the relation (1): 

 

 

                                                 (1) 

 

 

where: E – is the longitudinal elasticity modulus ; ρ - the density of the material of the beam;. 

l-  the length of the beam. 

The calculus methodology using the finite elements method is overpassing the following steps 

[3]:  

a) the calculation of the first proper circular frequencies meshing the entire structure into only 

one finite element; 

b) the calculation of the first proper circular frequencies meshing the entire structure in two 

finite elements; 

c) the calculation of the first proper circular frequencies meshing the entire structure in three 

finite elements; 

d) establishing of the minimum number of elements that assure a very small percentage of 

error (less than 0.1%); 

221 l
Ep

⋅
⋅=

ρ

π



Liliana Rusu, Şerban Vasilescu 102 
 

By meshing the entire structure in different numbers of elements, the following conclusions 

have been emphasised. 

When the meshing has been made into one finite element (fig. 1), considering the starting point 
(having zero displacements) embedded, the following equation have been obtained: 

 
 

                       (2) 

 

Solving the above equation the proper circular frequency has the form :  
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Meshing the entire structure in two finite elements (fig. 2), the following equation is obtained: 
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The above equation has two positive roots, p and p
*
, that represent the first two circular 

frequencies of the structure: 
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By meshing the entire structure in three finite elements (fig. 3), the following equation is 

obtained:  
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                 Fig.2 Structure meshed in two finite elements 
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             Fig.1 Structure meshed in one finite element  
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The above equation has as solutions the first three proper circular frequencies : 
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The cases analysed above suggest that the finite element method may reach some errors if the 

number of finite elements is small and the number of proper frequencies obtained is equal with 

the number of the elements. 

This is the reason why, when it is necessary to study a dynamical response (in displacements of 

stresses) it is necessary to mesh the structure into a big number of elements. 

If the calculus error is defined by the relation: 

 

                                                  [%]100

1

1
⋅

−
=

p

pp
Er  ,                                            (8) 

 

the following values are obtained: 

Table 1 

Number of finite 

elements 
1 2 3 

Error [%] 10.26 2.495 1.09 

 

From the data presented in table 1 it can be noticed that: 

o the dynamical analysis of the structure can reach unacceptable results if the entire structure is 

meshed only in one finite element; 

o if the structure is meshed in two finite elements the errors are less than 2.5% and become 

acceptable. 

The theoretical study has been continued with the dynamical analysis of the structure using an 

specialised programme that allows such type of analysis. The structure has been meshed in up to 

twenty finite elements and the errors obtained in every case are presented in table 2. The beam 

has the following geometrical and material data: 

mlmkgmNE 2100;/7850;/101,2 3211
==⋅= ρ . 

For this case the first circular frequency can be expressed by the following relation: 
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                                Fig. 3. Structure meshed in three finite elements  
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Table 2 

Number of 

finite 

elements  

1 2 3 4 5 6 7 8 9 10 20 

Error [%] 10.03 2.53 1.24 0.62 0.465 0.258 0.207 0.155 0.103 0.077 0 

 

Analysing the data presented in table 2 it can be observed that if the number of finite elements is 

higher than 10, the error is less than 0.1%. When the structure is meshed in twenty finite 

elements the results obtained using the finite elements method is the same with the theoretical 

one (error is zero). Using the same method a dynamic analysis for a pumping equipment has 

been performed. The analysed rod line has the entire length of 900 m and is build by two 

segments with the lengths l1 and l2 and have the external diameters: 7/8 in, respective 3/4 in. 

The results obtained are presented in table 3. 

 
Table 3 

Nr. crt. l1[m] l2[m] p[s-1] 

1 100 800 9.28 

2 200 700 9.54 

3 300 600 9.72 

4 400 500 9.84 

5 450 450 9.86 

6 500 400 9.84 

7 600 300 9.72 

8 700 200 9.54 

9 800 100 9.28 

 
It can be noticed that the circular frequencies remain inside the domain [9.28 – 9.84] 

rad/s. It can be concluded that the relation (1) reaches a 9.25% maximum error. 

A similar study has been made for a structure with three different cross sectional area 

and lengths: 504 m, 567 m, 1029 m and the diameters respectively 1 in, 7/8 in, 3/4 in. 

The same type of finite elements have been used and every part of the structure has been 

meshed in twenty finite elements. 

The values of the first ten axial circular frequencies are presented in table 4.  
 

Table 4 

The proper 

mode 
1 2 3 4 5 6 7 8 9 10 

Circular 

frequencies 

[s-1] 

 

0.7079 

 

1.83 

 

3.098 

 

4.204 

 

5.607 

 

6.73 

 

7.99 

 

9.05 

 

10.42 

 

11.52 

The circular frequency calculated with the relation (1) is 
1

1 868.3 −
= sp and using the finite 

elements method it is
1447.47079.022 −

=⋅⋅=⋅⋅= snp ππ . It can be noticed that the error 

reach the maximum value of 15%. 
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Conclusions  
 
From the analysis presented above it can be noticed that : 

o the proper frequency of the combined structure is about 15% away from the proper frequency 

of the structure with a single cross sectional area; ignoring this aspect can contribute to a mall-

function of the entire structure;  

o it has been established that the minimum number of finite elements in which a beam structure 

have to be meshed in order to obtain a minimum error is 10 elements;  

o it may be observed that the finite element method allows the calculation of a number of proper 

frequencies that is equal with the number of finite elements in which the structure has been 

meshed. This is the reason why, when a dynamical response is required, the structure has to 

be meshed in a number of finite elements that is higher than the number of necessary proper 

modes. 

The above methodology has the advantage that it is very simple and it can be easily 

programmed in order to obtain some specialized results. 
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Calculul frecvenţelor proprii 

ale unitǎţilor de pompare cu balansier 

Rezumat 

În lucrare se prezintă o metodologie de determinare a frecvenţelor proprii ale unitǎţilor de pompare cu 
balansier. Este utilizata metoda elementelor finite şi este stabilit numǎrul minim de elemente necesar 
pentru a nu exista erori intre rezultatele numerice şi cele rezultate din teoria vibraţiilor barelor cu masă 
continuǎ. Rezultatele obţinute sunt analizate pe exemple de calcul. 


