The Torsion of Thin Wall U-Profile Section Poles

Constantin Manea, Ion Eparu
Universitatea Petrol - Gaze din Ploieşti, Bd. Bucureşti nr. 39, România
e-mail: ieparu @upg-ploiesti.ro

Abstract

The paper presents a method to calculate displacement and stresses that appear in thin wall U-profile sections poles. Displacements of the section is considered to be restrained, due to links and torsion momentum variation along the pole, which produces both torsion and bending alongside the pole. The results obtained using this method differs from those using the elementary torsion stress theory that considers section movement to be free. When projecting this pole types the stress verification must be done using this calculation method.

Key words: torsion, bending-torsion moment, bending-torsion bimoment, stress.

Sectorial Characteristics for the U-Profile Section

The center of gravity O and the center of bending-torsion C are both found on the symmetry axis $O z$ (fig. 1, a).

We choose as the arbitrary pole the P point obtained from the intersection of the $O z$ axis and the median line of the profile heart, and as the origin radius $P O$ (fig. 1, a).

In regard to the P pole, the gravity center O is situated at the following distance:

$$
\begin{equation*}
e=P O=\frac{\left(s_{1}+\frac{t_{2}}{2}\right)^{2} \cdot t_{1}}{2 \cdot\left(s_{1}+\frac{t_{2}}{2}\right) \cdot t_{1}+\left(s_{2}-t_{1}\right) \cdot t_{2}} \tag{1}
\end{equation*}
$$

The sectorial coordinates chart

$$
\omega_{P}=\int_{0}^{s} h_{P} \cdot d s
$$

is given in fig. $1, b$. On the $B_{1} B_{2}$ wing, it is positive because it is obtained by rotating the origin axis $P z$ in the positive way from the $O x$ axis (anti-clockwise for an observer watching the graph) while on the $B_{3} B_{4}$ wing, it is negative.

The value on the Oy axis in B_{1} is double the area of the $P B_{1} B_{2}$ triangle,

$$
\begin{equation*}
\omega_{P}\left(B_{1}\right)=\frac{1}{2} \cdot s_{1} \cdot s_{2} \tag{2}
\end{equation*}
$$

The y coordinates of each point on the middle contour of the section are represented as the diagram in fig. $1, c$.

Using Veresceaghin's rule, we calculate the integral:

$$
\begin{equation*}
\int_{(A)} y \cdot \omega_{P} \cdot d A=-\frac{1}{4} \cdot s_{1}^{2} \cdot s_{2}^{2} \cdot t_{1} \tag{3}
\end{equation*}
$$

The moment of inertia reported to the $O z$ axis:

$$
\begin{equation*}
I_{z}=\frac{1}{12} \cdot\left[\left(s_{1}+\frac{t_{2}}{2}\right) \cdot h^{3}-\left(s_{1}-\frac{t_{2}}{2}\right)\left(s_{2}-t_{1}\right)^{3}\right] \tag{4}
\end{equation*}
$$

The position of C on the $O z$ axis is determined from the paper [2],

$$
\begin{equation*}
a_{z}=P C=-\frac{\int_{(A)} y \cdot \omega_{P} \cdot d A}{I_{z}}=\frac{s_{1}^{2} \cdot s_{2}^{2} \cdot t_{1}}{4 \cdot I_{z}} \tag{5}
\end{equation*}
$$

The chart $\omega=\omega_{C}$ with the pole in C is represented in fig. $1, d$.
The values of the sectorial coordinates in report to the C pole are:

$$
\begin{equation*}
\omega\left(B_{1}\right)=\frac{1}{2} \cdot s_{2} \cdot\left(s_{1}-a_{z}\right) ; \omega\left(B_{2}\right)=-\frac{1}{2} \cdot s_{2} \cdot a_{z} \tag{6}
\end{equation*}
$$

The static sectorial moment S_{ω} is calculated, according to [2], with the formula

$$
\begin{equation*}
S_{\omega}=\int_{0}^{s} \omega \cdot t \cdot d s \tag{7}
\end{equation*}
$$

where s is measured on the middle contour from the B_{4} end of the lower leg to the current point; the S_{ω} chart is drawn in fig. $1, e$.

On the lower and upper leg S_{ω} varies on a parabola with the maximum value in E, and F respectively, so that $\quad B_{3} F=B_{2} E=a_{z}$,

$$
\begin{equation*}
S_{\omega \max }=S_{\omega}(F)=S_{\omega}(E)=-\frac{s_{2} \cdot\left(s_{1}-a_{z}\right)^{2} \cdot t_{1}}{4} \tag{8}
\end{equation*}
$$

The static sectorial moments in B_{2} and B_{3} are equal:

$$
\begin{equation*}
S_{\omega}\left(B_{2}\right)=S_{\omega}\left(B_{3}\right)=S_{\omega}(F)+\frac{1}{4} \cdot a_{z}^{2} \cdot s_{2} \cdot t_{1} \tag{9}
\end{equation*}
$$

Fig. 1
On the heart S_{ω} it varies according to a parabola with the maximum value in P,

$$
\begin{equation*}
S_{\omega \max }=S_{\omega}(P)=S_{\omega}\left(B_{2}\right)+\frac{1}{8} \cdot a_{z} \cdot s_{2}^{2} \cdot t_{2} \tag{10}
\end{equation*}
$$

The sectorial moment of inertia is obtained, according to [2],

$$
\begin{equation*}
I_{\omega}=\int_{(A)} \omega^{2} \cdot d A \tag{11}
\end{equation*}
$$

and is solved using Veresceaghin's rule.
The torsion moment of inertia with the free section displacement:

$$
\begin{equation*}
I_{t}=\frac{1}{3} \cdot\left[\left(s_{1}+\frac{t_{2}}{2}\right) \cdot t_{1}^{3}+\left(s_{2}-t_{1}\right) \cdot t_{2}^{3}\right] \tag{12}
\end{equation*}
$$

Application

Considering that the $A B$ beam (fig. 2, a) - simply supported for bending at the ends A and B and encased for torsion at the same ends - is pressed in $C(x=a)$ with a moment M_{C}, on the $O x$ axis (fig. 2, a); the particular solution is given by [1],

$$
\begin{equation*}
\bar{\varphi}=-\frac{M_{C}}{k \cdot G \cdot I_{t}}[k \cdot(x-a)-\operatorname{sh} k(x-a)]_{x>a} \tag{13}
\end{equation*}
$$

The limit conditions are:

$$
\varphi_{0}=0 ; B_{\omega, 0}=0 \text { for } x=0
$$

and

$$
\varphi(2 a) ; B(2 a)=0 \text { for } x=2 a
$$

Considering the momentum equations in respect to the $O x$ axis and the anti-symmetrical nature of the moment of torsion we get $M_{x, 0}=-\frac{M_{C}}{2}$.

With these values, the expression of the φ section rotation, of x distance from the $C x$ axis, as given by [1], is

$$
\begin{equation*}
\varphi=\varphi_{0}^{\prime} \frac{\operatorname{sh} k x}{k}+\frac{M_{C}}{2 \cdot k \cdot G \cdot I_{t}} \cdot(k \cdot x-\operatorname{sh} k x)-\frac{M_{C}}{k \cdot G \cdot I_{t}} \cdot[k \cdot(x-a)-\operatorname{sh} k(x-a)]_{x>a} \tag{14}
\end{equation*}
$$

From the limit condition, for $x=2 a$ in B,

$$
\begin{equation*}
\varphi(2 a)=\varphi_{0}^{\prime} \frac{s h 2 k a}{k}-\frac{M_{C} \cdot \operatorname{sh} 2 k a}{2 \cdot k \cdot G \cdot I_{t}}+\frac{M_{C}}{k \cdot G \cdot I_{t}} \cdot \operatorname{sh} k a=0 \tag{15}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
\varphi_{0}^{\prime}=\frac{M_{C}}{2 \cdot G \cdot I_{t}} \cdot\left[1-2 \cdot \frac{\operatorname{sh} k a}{\operatorname{sh} 2 k a}\right] \tag{16}
\end{equation*}
$$

Using this value in (14) we obtain the expression of the torsion rotation φ, (fig. 2, c):

$$
\begin{equation*}
\varphi=\frac{M_{C}}{2 \cdot k \cdot G \cdot I_{t}} \cdot\left\{k x-2 \cdot \frac{\operatorname{sh} k a}{\operatorname{sh} 2 k a} \cdot \operatorname{shkx-2} \cdot[k \cdot(x-a)-\operatorname{sh} k(x-a)]_{x>a}\right\} \tag{17}
\end{equation*}
$$

and the derivates φ^{\prime} (fig. 2, d),

$$
\begin{gather*}
\varphi^{\prime}=\frac{M_{C}}{2 \cdot G \cdot I_{t}} \cdot\left\{1-2 \cdot \frac{\operatorname{sh} k a}{\operatorname{sh} 2 k a} \cdot \operatorname{ch} k x-2 \cdot[1-\operatorname{ch} k(x-a)]_{x>a}\right\} ; \tag{18}\\
\varphi^{\prime \prime}=\frac{M_{C} \cdot k}{G \cdot I_{t}} \cdot\left[-\frac{\operatorname{sh} k a}{\operatorname{sh} 2 k a} \cdot \operatorname{shk} x+\operatorname{sh} k(x-a)_{x>a}\right] ; \tag{19}\\
\varphi^{\prime \prime \prime}=\frac{M_{C} \cdot k^{2}}{G \cdot I_{t}} \cdot\left[-\frac{\operatorname{sh} k a}{\operatorname{sh} 2 k a} \cdot \operatorname{ch} k x+\left.\operatorname{ch} k(x-a)\right|_{x>a}\right] ; \tag{20}
\end{gather*}
$$

With the expressions in [1] we determine:

- the bending-torsion bimomentum

$$
\begin{equation*}
B_{\omega}=-E \cdot I_{\omega} \cdot \varphi^{\prime \prime}=\frac{M_{C}}{k} \cdot\left[\frac{\operatorname{sh} k a}{\operatorname{sh} 2 k a} \cdot \operatorname{shkx}-\left.\operatorname{sh} k(x-a)\right|_{x>a}\right] \tag{21}
\end{equation*}
$$

the chart is illustrated in fig. $2, c$;

- the bending-torsion momentum

$$
\begin{equation*}
M_{\omega}=E \cdot I_{\omega} \cdot \varphi^{\prime \prime \prime}=M_{C} \cdot\left[-\frac{\operatorname{shka}}{\operatorname{sh} 2 k a} \cdot \operatorname{ch} k x+\left.\operatorname{chk}(x-a)\right|_{x>a}\right] \tag{22}
\end{equation*}
$$

as shown in fig. $2, f$;

- the moment of torsion corresponding to the free movements

$$
\begin{equation*}
M_{t}=M_{x}-M_{\omega}=-G \cdot I_{t} \cdot \varphi^{\prime}=M_{C}\left\{\frac{\operatorname{sh} k a}{\operatorname{sh} 2 k a} \cdot \operatorname{ch} k x-0,5+[1-\operatorname{ch} k(x-a)]_{x>a}\right\} ; \tag{23}
\end{equation*}
$$

the chart is in fig. $2, g$.
The chart values are calculated for the section in fig. $2, b$, which has:

$$
\begin{gathered}
I_{z}=87.4426 \cdot 10^{6} \mathrm{~mm}^{4} ; \quad a_{z}=\frac{s_{1}^{2} \cdot s_{2}^{2} \cdot t_{1}}{4 \cdot I_{z}}=44.5 \mathrm{~mm} ; \\
e=P O=31.9 \mathrm{~mm} ; I_{t}=23.824 \cdot 10^{4} \mathrm{~mm}^{4} ; \\
I_{\omega}=137.884 \cdot 10^{9} \mathrm{~mm}^{6} ; \\
\frac{G}{E}=\frac{1}{2 \cdot(1+\mu)}=0.385 ; \\
k=\sqrt{\frac{G \cdot I_{t}}{E \cdot I_{\omega}}}=0.81561 \cdot 10^{-3} \frac{1}{\mathrm{~mm}} ; \\
a=1.5 \mathrm{~m}=1.5 \cdot 10^{3} \mathrm{~mm} ; k \cdot a=1.2234 ; 2 \cdot k \cdot a=2.4468
\end{gathered}
$$

The stresses are calculated from [1], with the formulas:

$$
\begin{equation*}
\sigma_{\omega}=\frac{B_{\omega}}{I_{\omega}} \cdot \omega ; \tau_{\omega}=\frac{M_{\omega} \cdot S_{\omega}}{t \cdot I_{\omega}} \cdot \omega ; \tau_{t}=\frac{M_{t}}{I_{t}} \cdot t \tag{24}
\end{equation*}
$$

b)

Fig. 2

The chart for the normal stresses σ_{ω} is given in fig. 2, h.
The bending-torsion bimomentum has the maximum value in the $C(x=a)$ section,

$$
B_{\omega}(C)=0.4203 \frac{M_{C}}{k}
$$

and considering

$$
\omega\left(B_{2}\right)=-66.75 \cdot 10^{2} \mathrm{~mm}^{2}, \omega\left(B_{1}\right)=113.25 \cdot 10^{2} \mathrm{~mm}^{2}
$$

we get:

$$
\begin{gathered}
\sigma_{\omega}\left(B_{1}\right)=4.232 \cdot 10^{-5} \frac{M_{C}}{m^{3}} ; \sigma_{\omega}\left(B_{2}\right)=-2.4947 \cdot 10^{-5} \frac{M_{C}}{m^{3}} . \\
\sigma_{\omega}\left(B_{4}\right)=-\sigma_{\omega}\left(B_{1}\right) ; \sigma_{\omega}\left(B_{3}\right)=-\sigma_{\omega}\left(B_{2}\right) .
\end{gathered}
$$

The tangential stress chart τ_{ω} is shown in fig. 2, i.
In section C-right, $C(a+\varepsilon), M_{\omega}=0.5 \cdot M_{C}$ and while :

$$
\begin{gathered}
S_{\omega}(E)=S_{\omega}(F)=-513 \cdot 10^{4} \mathrm{~mm}^{4} \\
S_{\omega}\left(B_{2}\right)=S_{\omega}\left(B_{3}\right)=-334.78 \cdot 10^{4} \mathrm{~mm}^{4} \\
S_{\omega}(P)=S_{\omega}\left(B_{3}\right)+\frac{1}{8} \cdot a_{z} \cdot s_{2}^{2} \cdot t_{2}=165.845 \cdot 10^{4} \mathrm{~mm}^{4},
\end{gathered}
$$

the values for τ_{ω} are:

$$
\begin{aligned}
& \tau_{\omega}(E)=\tau_{\omega}(F)=-1.55 \cdot 10^{-6} \frac{M_{C}}{\mathrm{~mm}^{3}} ; \\
& \tau_{\omega}\left(B_{2}-\text { talpă }\right)=-1.01 \cdot 10^{-6} \frac{M_{C}}{\mathrm{~mm}^{3}} ; \\
& \tau_{\omega}\left(B_{2}-\text { inimă }\right)=-1.21 \cdot 10^{-6} \frac{M_{C}}{\mathrm{~mm}^{3}} ; \\
& \tau_{\omega}(P)=0.601 \cdot 10^{-6} \frac{M_{C}}{\mathrm{~mm}^{3}} .
\end{aligned}
$$

From the σ_{ω} (fig. 2,h) and τ_{ω} (fig. 2,i) charts, in the B_{1} point of the $C(a+\varepsilon)$ section,

$$
\sigma_{\omega}\left(B_{1}\right)=4.2326 \cdot 10^{-5} \frac{M_{C}}{m^{3}}
$$

and

$$
\tau_{\omega}\left(B_{1}\right)=0, \tau_{t}=0
$$

The resistance condition, in accordance with T_{τ},

$$
\sigma_{e c h}=\sigma_{\omega}\left(B_{1}\right)=4.2326 \cdot 10^{-5} \frac{M_{C}}{\mathrm{~mm}^{3}} \leq \sigma_{a}=150 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} .
$$

Therefore: $\quad M_{C \text { max }}=35.44 \cdot 10^{5} \mathrm{~N} \cdot \mathrm{~mm}=3.544 \mathrm{kN} \cdot \mathrm{m}$.
In all the other beam points the resistance condition is met.
So, in E :

$$
\begin{gathered}
\sigma_{\omega}(E)=0 ; \\
\tau_{\omega}(E)=\tau_{\max }=1.55 \cdot 10^{-6} \frac{M_{C}}{\mathrm{~mm}^{3}}=1.55 \cdot 10^{-6} \cdot 3.544 \cdot 10^{6}=5.5 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} ; \\
\sigma_{\text {ech }}=2 \cdot \tau_{\omega \max }=11 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\sigma_{a}=150 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} .
\end{gathered}
$$

Conclusions

The paper presents a method to calculate displacement and stresses that appear in thin wall Uprofile sections poles.

Displacements of the section are considered to be blocked, due to links and torsion momentum variation along the pole, which produces both torsion and bending alongside the pole. Therefore, normal and tangential stresses appear in this type of poles. For thin sections, this stresses become very high thus breaking the poles. So a resistance check is needed, using the above-presented method.

References

1. Posea, N., Anghel, Al., Manea, C., Hotea, Gh., Rezistența materialelor. Editura Ştiințifică şi Enciclopedică, Bucureşti, 1986.
2. Posea, N., Rezistenţa materialelor. Editura Didactică şi Pedagogică, Bucureşti, 1979.
3. Manea, C., Eparu, I., The torsion of poles with thin walls having an I profile section. Volumul celei de a II-a ediții a conferinței internaționale I.C.E.M., Petroşani, 24-26 mai, 2007.
4. Manea, C., Eparu, I., The torsion of thin wall poles with annular section, cut according to a generating line. Volumul celei de a II-a ediții a conferinței internaționale I.C.E.M., Petroşani, 24-26 mai 2007.

Torsiunea barelor drepte cu pereți subțiri, având secțiunea în formă de profil U

Rezumat

În lucrare este prezentată o metodă exactă pentru determinarea stării de tensiuni în secțiunea unei bare cu pereți subțiri de forma unui profil U, considerând deplanările secțiunilor împiedicate, supusă la torsiune. Ca urmare a modului cum sunt considerate deplanările, în secțiunea barei apar şi tensiuni normale, pe lângă cele tangențiale, astfel încât pentru verificare este nevoie să se aplice o teorie de rezistență.

