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Abstract

This paper considers the problem of viscous dissipation in the laminar incompressible fluid flow between
two parallels plates. The method proposed to determine the temperature of the fluid makes use of the
separation of variables. Thus the solution of the problem is obtained by series expansion about the
complete eigenfunctions system of a Sturm-Liouville problem. Eigennfunction and eigenvalues of this
Sturm-Liouville problem are obtained by Galerkin’s method.
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Introduction

The problem of viscous dissipation in the fluid flow has many practical applications. An
example is oil products transport through ducts; another is the polymers processing.

Now we will consider the incompressible laminar fluid flow between two infinite parallel plates.
The plates are maintained at a constant temperature, 7,,, and the fluid flows through the plates

with the same temperature. The flow is slow, thus we can neglect the heat transfer by
conduction in the flow direction. At the same time we will consider that the fluid density, p,

specific heat, C b and the heat transfer coefficient, k, are constants. The flow is related to a

cartesian coordinate system, the Ox axis is directed to the flow direction, the Oy axis is
normal to the plates and the distance between plates is 2/ .

For the fluid velocity in the cross section we will consider the expression:

N
v =y, 1—[%) ) (1)

where v, is the maximal fluid velocity, N = (n + 1)/ n where n is a rheological constant of the

fluid. For Newtonian fluids n =1, for Bingham expanded fluid n <1, and for Bingham
pseudoplastic fluid n > 1.

Given these conditions, the energy equation is [1], [2]:
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where K is a rheological constant of the fluid.

The aim of this article is to establish an approximate solution of equation (1), which verifies
certain initial and boundary conditions.

The plan of the article is: in section two we formulate the mathematical problem, section three
will contain the algorithm for determination of eigenvalues and eigenfunctions (for the Sturm-
Liouville problem obtained using the method of separation of variables) with Galerkin’s method
[3]; in the last section, we will present the approximate solution of the problem and some
numerical results.

The Mathematical Problem

We associate to equation (1) the initial condition

x=0,T =T, 3)
and boundary conditions
y=0,a—T=O,(x>O) 4)
dy
y=h,T=T,,(x>0) 5)

Condition (4) specifies that at the middle of the distance between plates the temperature has a
maximum point.

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in
dimensionless form. With the transformation group:

T-T,
e=—°,n=%,w=L2 (6)
T, pC,H v,y
the equation (2) and the boundary conditions (3), (4), (5) becomes:
2
(-n")2 -9 vy, ™
v an
v=0,0=0, (8)
00
n:O’_:O’(\V>O)s (9)
an
n=1,6=0,y>0). (10)
In equation (7) the coefficient N, is the Brinkman number [2].
It is easy to find that a particular solution of equation (7) which verifies condition (10) is:
N
0, = ——2—({1-n"*? 11
! (N+1)(N+2)( ) (b
The change of function
0=u+9, (12)

leads to the equation
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2
(1 n )aw—anz- (13)

The unknown function u will satisfy the conditions (9) and (10) and the initial condition (8) is
replaced by:
y=0,u=-6,. (14)

The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of
separation of variables in order to determine function u. By this method function u is obtained
under the form:

u = Y e, ®, (expl-12y) (15)

n=1

where @ and A, are the eigenvalues and the eigenfunctions of Sturm-Liouville problem:

2
2 2 (-n" o =0, (16)
dn
n=0,9%_0.n=1,®0-0. (17)
dn

The Application of Galerkin’s Method

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville problem (16), (17)
we will apply the Galerkin’s method. For this we consider the operator:

U:DWU)c L,[0,1] - L,[0.1],

D(U)z{d)e c2[0,1],‘:13(0)=0,q>(1)=0}, (18)
M
e ., N
M
We look at the solution of Sturm-Liouville problem (16), (17) under the approximate form

®(n)=> a0, (), (19)
k=1

where ne N* is the approach level of function @, and ((pk )k oN* 18 a complete system of

functions in L, [0,1], functions which verify the conditions [4]:

‘L&(o):o,mk(lho,keN*. (20)
r

The unknown coefficients a, k = I,_n are determined, given the conditions
<U(@)9;>=0, j=Ln, (21)

the scalar product being considered in the space of square integrable function L, [O,l].

By applying these conditions, we obtain the linear algebraic system in unknowna, , k =1n:
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n

(O‘kj +ABy )ak =0, j=1Ln, (22)
k=1
where
1d2(pk . PR
Oy = odn—zq’jdn’f’k:l’”’ 23)
. _
B =JO(1—nN)(pk(P,-dn s Jok=Ln. 24)

Because the system (22) must have nontrivial solutions, we obtain the equation:
A, =|A+NB|=0, (25)
where A and B are the matrix A = (Oc ki )k,j=L7’ B= (Bkj )k,j=L7' The solutions of equations (25)

represent the approximate values, for the n approach level, for the eigenvalues 7»%, A3LA ,kzn .

The solution of equation (1) is difficult to be obtained under this form. Consequently, through

elementary transformations of determinant A , this equation takes the form [5]:

n’

‘C—ﬁg

=0, (26)

where [ is the identity matrix of n order.

Unlike matrix A and B which are symmetric, matrix C does not have this property anymore.
Therefore we must adopt an adequate method for the determination of its eigenvalues [6].

reN® 1N Lo [0,1]:
o, ()=Jo (), 27)

In the following we will use the complete system of functions ((p K )

where J, is the Bessel function of the first kind and zero order and p, k€ N"are the roots of
equation:
To(u)=0. (28)

The integrals which appear in the formulas (23), (24) are calculated with a quadrature formula
that must be compatible with Galerkin’s method [7]. The eigenvalues of the Sturm-Liouville
problem obtained by this method are presented in the next section.

The eigenfunctions of the problem (18), (19) are the analytical form

q’i(ﬂ)ZinJo(ﬂjﬂ)’ i=ln (29)
=1

where (cl-1 ,Cin A ey, ), i= I,_n are the eigenvecteurs of the matrix A+ A’B.

The Approximate Solution of the Problem

The unknown function u, for the n level of approximation of Galerkin’s method, is obtained
from (15) and (27):
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n n _7\12
u(\u,n)=z Zcicike Mo (), (30)
k=1 \i=1

The coefficients ¢; ,i= I,_n from (30) are determined by the use of the condition (14) and by
considering that the solutions ®,,i = I,_n, of the problem (16), (17) are orthogonal with weight

1—T]N by [0,1] [4]. Because the functions ®;,i = I,_n, are not obtained exactly, we prefer to
use the orthogonality with weight 77 of Bessel functions on [0,1]. Thus, for the n level of

approximation, the constants c; , i = 1,n are determined by the resolution of the linear algebraic
system:

J; (1 - )‘Vo (ukn)dn

Jk=1n, (1)
L)
[ 175 (wn)an

Zn:c c; = Np
W= —

T (N+1)N +2)
The final solution of the problem is obtained now by using the relations (12), (15) and (30):

N n n _73
o(y,n)=—2B _|{—nN*? coe iy , 32
(\V n) (N+1)(N+2)( n )+; gclclke O(Mkn) ( )

As an example, we will consider a fluid with unit Brinkman number. The eigenvalues of Sturm-
Liouville problem (16), (17) are presented in table 1. The coefficients given by (23) and (24) are
obtained by a numerical quadrature procedure [6]. The eigenvalues have been obtained by using
the procedures BALANC, ELMHES, HQR [6]. System (31) has been solved using a procedure
based on Gauss method [6].

Table 1. Eigenvalues of Sturm-Liouville problem

n

0,35 0,5 0,6 0,7 0,75 0,8 0,9 1,0 1,1 1,2

}\(2

n

2,578 2,646 2,688 2,727 2,746 2,764 2,797 2,827 2,855 2,881

26,368 28,132 29,133 30,019 30,425 30,807 31,512 32,147 32,720 33,242

76,320 81,567 84,535 87,161 88,362 89,498 91,590 93,474 95,179 96,730

152,343 | 162,900 | 168,861 | 174,131 | 176,543 | 178,822 | 183,022 | 186,805 | 190,229 | 193,343

254,430 | 272,117 | 282,097 | 290,917 | 294,953 | 298,767 | 305,796 | 312,127 | 317,858 | 323,070

382,605 | 409,243 | 424,267 | 437,544 | 443,618 | 449,358 | 459,938 | 469,467 | 478,093 | 485,938

536,843 | 574,258 | 595,355 | 613,996 | 622,525 | 630,584 | 645,437 | 658,815 | 670,925 | 681,940

717,133 | 767,145 | 795,342 | 820,254 | 831,652 | 842,421 | 862,271 | 880,148 | 896,332 | 911,051

923,497 | 987,926 | 1024,24 | 1056,33 | 1071,01 | 1084,88 | 111045 | 1133,48 | 1154,32 | 1173,28

115592 | 1236,59 | 1282,06 | 1322,23 | 1340,61 | 1357,98 | 1389,98 | 1418,81 | 144490 | 1468,64
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The variation of the dimensionless temperature 6 given by (32) is presented in figures 1-5. In
the abscisse axis, there is the reduced transverse distance 1 and in the axis of ordinates it is

presented the dimensionless temperature 6. The variation of dimensionless temperature 0 is
presented for some values of dimensionless variable .

An important similarity criterion in the study of convective heat transfer is the Nusselt number.
This number is calculated with the formula [8]:

289

an

n=l1

— Il I 33
<0>-0, G

Nu =
where

1
[l1-n"Jotn)an
<o>=0 (34)

j(l-n’v)dn

is the bulk temperature and 0, is the wall temperature.

In figure 6, we present the variation of Nusselt number in function of dimensionless longitudinal
variable y and some values of parameter n.
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Given the results obtained, we can deduce that for a certain value of the rheological coefficient
n, the temperature of the fluid is increased along the plates. For a given value of the
dimensionless variable y , the temperature of the fluid is increased together with n. As opposed

to it, the Nusselt number decreases white n increases. The obtained results properly fit the
results in [2].
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o

Asupra disipatiei vascoase in miscarea fluidelor
incompresibile printre doua placi plane paralele cu
conditii la limita Dirichlet
Rezumat

In acest articol este studiatd problema disipatiei vascoase in migcarea laminard incompresibild a unui
fluid vdscos printre doua pldci plane paralele. Se utilizeaza pentru determinarea temperaturii fluidului
metoda separarii variabilelor. Solutia problemei se obtine astfel sub forma unei serii dupa sistemul
complet de functii proprii unei probleme de tip Sturm-Liouville. Functiile si valorile proprii ale acestei
probleme Sturm-Liouville sunt obtinute cu ajutorul metodei lui Galerkin.



