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Abstract 
 
This paper considers the problem of viscous dissipation in the laminar incompressible fluid flow between 
two parallels plates. The method proposed to determine the temperature of the fluid makes use of the 
separation of variables. Thus the solution of the problem is obtained by series expansion about the 
complete eigenfunctions system of a Sturm-Liouville problem. Eigennfunction and eigenvalues of this 
Sturm-Liouville problem are obtained by Galerkin’s method. 
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Introduction 
 

The problem of viscous dissipation in the fluid flow has many practical applications. An 

example is oil products transport through ducts; another is the polymers processing. 

Now we will consider the incompressible laminar fluid flow between two infinite parallel plates. 

The plates are maintained at a constant temperature, 0T , and the fluid flows through the plates 

with the same temperature. The flow is slow, thus we can neglect the heat transfer by 

conduction in the flow direction. At the same time we will consider that the fluid density, ρ , 

specific heat, pC , and the heat transfer coefficient, k , are constants. The flow is related to a 

cartesian coordinate system, the Ox  axis is directed to the flow direction, the Oy  axis is 

normal to the plates and the distance between plates is h2 . 

For the fluid velocity in the cross section we will consider the expression: 
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where 0v  is the maximal fluid velocity, ( ) nnN /1+=  where n is a rheological constant of the 

fluid. For Newtonian fluids 1=n , for Bingham expanded fluid 1<n , and for Bingham 

pseudoplastic fluid 1>n . 

Given these conditions, the energy equation is [1], [2]: 
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where K is a rheological constant of the fluid. 

The aim of this article is to establish an approximate solution of equation (1), which verifies 

certain initial and boundary conditions. 

The plan of the article is: in section two we formulate the mathematical problem, section three 

will contain the algorithm for determination of eigenvalues and eigenfunctions (for the Sturm-

Liouville problem obtained using the method of separation of variables) with Galerkin’s method 

[3]; in the last section, we will present the approximate solution of the problem and some 

numerical results. 
 

 

The Mathematical Problem 
 

We associate to equation (1) the initial condition 

 0,0 TTx ==  (3) 

and boundary conditions 

 )0(,0,0 >=
∂

∂
= x

y

T
y  (4) 

 )0(,TT, 0 >== xhy  (5) 

Condition (4) specifies that at the middle of the distance between plates the temperature has a 

maximum point. 

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in 

dimensionless form. With the transformation group: 
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the equation (2) and the boundary conditions (3), (4), (5) becomes: 

 ( ) N
Br

N N η+
η∂

θ∂
=

ψ∂

θ∂
η−

2

2

1 , (7) 

 0,0 =θ=ψ , (8) 

 )0(,0,0 >ψ=
η∂

θ∂
=η , (9) 

 )0(,0,1 >ψ=θ=η . (10) 

In equation (7) the coefficient BrN  is the Brinkman number [2]. 

It is easy to find that a particular solution of equation (7) which verifies condition (10) is: 
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The change of function 

 1θ+=θ u  (12) 

leads to the equation 
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The unknown function u will satisfy the conditions (9) and (10) and the initial condition (8) is 

replaced by: 

 1,0 θ−==ψ u . (14) 

The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of 

separation of variables in order to determine function u. By this method function u is obtained 

under the form: 

 ( ) ( )∑
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where nΦ  and nλ  are the eigenvalues and the eigenfunctions of Sturm-Liouville problem: 
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The Application of Galerkin’s Method 
 

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville problem (16), (17) 

we will apply the Galerkin’s method. For this we consider the operator: 

( ) [ ] [ ]1,01,0: 22 LLUDU →⊂ , 

 ( ) [ ] ( ) ( )








=Φ=
η

Φ
∈Φ= 01,00

d

d
,1,0

2CUD , (18) 

( ) ( )Φη−λ+
η

Φ
=Φ NU 1

d

d 2

2

2

. 

We look at the solution of Sturm-Liouville problem (16), (17) under the approximate form 
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where 
∗∈ Nn  is the approach level of function Φ , and ( ) ∗∈ϕ

Nkk  is a complete system of 

functions in [ ]1,02L , functions which verify the conditions [4]: 

 ( ) ( ) 01,00
d
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The unknown coefficients nkak ,1, =  are determined, given the conditions 

 ( ) 0, =>ϕΦ< jU , nj ,1= , (21) 

the scalar product being considered in the space of square integrable function [ ]1,02L . 

By applying these conditions, we obtain the linear algebraic system in unknown ka , nk ,1= : 



56 Tudor Boacă 

 ( )∑
=

==βλ+α
n

k
kkjkj nja

1

2 ,1,0 , (22) 

where 

 nkjjkj ,1,,d
d

d1

0 2

k
2

=ηϕ
η

ϕ
=α ∫ , (23) 

 ( ) nkjjk
N

kj ,1,,d1
1

0
=ηϕϕη−=β ∫ . (24) 

Because the system (22) must have nontrivial solutions, we obtain the equation: 

 02 =λ+≡∆ BAn , (25) 

where A and B are the matrix ( )
njkkjA

,1, =
α= , ( )

njkkjB
,1, =

β= . The solutions of equations (25) 

represent the approximate values, for the n approach level, for the eigenvalues 2
1λ , 22

2 ,, nλλ Λ . 

The solution of equation (1) is difficult to be obtained under this form. Consequently, through 

elementary transformations of determinant n∆ , this equation takes the form [5]: 

 02 =λ− nIC , (26) 

where nI  is the identity matrix of n order. 

Unlike matrix A and B which are symmetric, matrix C does not have this property anymore. 

Therefore we must adopt an adequate method for the determination of its eigenvalues [6]. 

In the following we will use the complete system of functions ( ) ∗∈ϕ
Nkk  in [ ]1,02L : 

 ( ) ( )ηµ=ηϕ kk J 0 , (27) 

where 0J  is the Bessel function of the first kind and zero order and ∗∈µ Nkk , are the roots of 

equation: 

 ( ) 00 =µJ . (28) 

The integrals which appear in the formulas (23), (24) are calculated with a quadrature formula 

that must be compatible with Galerkin’s method [7]. The eigenvalues of the Sturm-Liouville 

problem obtained by this method are presented in the next section. 

The eigenfunctions of the problem (18), (19) are the analytical form 
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where ( ) niccc inii ,1,,,, 21 =Λ  are the eigenvecteurs of the matrix BA 2λ+ . 

 

 

The Approximate Solution of the Problem 
 

The unknown function u, for the n level of approximation of Galerkin’s method, is obtained 

from (15) and (27): 
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The coefficients nici ,1, =  from (30) are determined by the use of the condition (14) and by 

considering that the solutions nii ,1, =Φ , of the problem (16), (17) are orthogonal with weight 

Nη−1  by [0,1] [4]. Because the functions nii ,1, =Φ , are not obtained exactly, we prefer to 

use the orthogonality with weight η  of Bessel functions on [0,1]. Thus, for the n level of 

approximation, the constants nici ,1, =  are determined by the resolution of the linear algebraic 

system: 
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The final solution of the problem is obtained now by using the relations (12), (15) and (30): 
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As an example, we will consider a fluid with unit Brinkman number. The eigenvalues of Sturm-

Liouville problem (16), (17) are presented in table 1. The coefficients given by (23) and (24) are 

obtained by a numerical quadrature procedure [6]. The eigenvalues have been obtained by using 

the procedures BALANC, ELMHES, HQR [6]. System (31) has been solved using a procedure 

based on Gauss method [6]. 

 
Table 1. Eigenvalues of Sturm-Liouville problem 

 

n 

0,35 0,5 0,6 0,7 0,75 0,8 0,9 1,0 1,1 1,2 

2
nλ  

2,578 2,646 2,688 2,727 2,746 2,764 2,797 2,827 2,855 2,881 

26,368 28,132 29,133 30,019 30,425 30,807 31,512 32,147 32,720 33,242 

76,320 81,567 84,535 87,161 88,362 89,498 91,590 93,474 95,179 96,730 

152,343 162,900 168,861 174,131 176,543 178,822 183,022 186,805 190,229 193,343 

254,430 272,117 282,097 290,917 294,953 298,767 305,796 312,127 317,858 323,070 

382,605 409,243 424,267 437,544 443,618 449,358 459,938 469,467 478,093 485,938 

536,843 574,258 595,355 613,996 622,525 630,584 645,437 658,815 670,925 681,940 

717,133 767,145 795,342 820,254 831,652 842,421 862,271 880,148 896,332 911,051 

923,497 987,926 1024,24 1056,33 1071,01 1084,88 1110,45 1133,48 1154,32 1173,28 

1155,92 1236,59 1282,06 1322,23 1340,61 1357,98 1389,98 1418,81 1444,90 1468,64 
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The variation of the dimensionless temperature θ  given by (32) is presented in figures 1-5. In 

the abscisse axis, there is the reduced transverse distance η  and in the axis of ordinates it is 

presented the dimensionless temperature θ. The variation of dimensionless temperature θ  is 

presented for some values of dimensionless variable ψ . 

An important similarity criterion in the study of convective heat transfer is the Nusselt number. 

This number is calculated with the formula [8]: 
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is the bulk temperature and wθ  is the wall temperature. 

In figure 6, we present the variation of Nusselt number in function of dimensionless longitudinal 

variable ψ  and some values of parameter n. 

 

 

 

 

Fig. 1. Dimensionless temperature profiles 

for constant walls temperature, n=1,2, NBr=1 

Fig. 2. Dimensionless temperature profiles for  

constant walls temperature, n=1,0 

(Newtonian fluid), NBr=1 
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Fig. 3. Dimensionless temperature profiles 

for constant walls temperature, n=0,75, NBr=1 

Fig. 4. Dimensionless temperature profiles 

for constant walls temperature, n=0,5, NBr=1 

 

  

Fig. 5. Dimensionless temperature profiles 

for constant walls temperature, n=0,35, NBr=1 

Fig. 6. Variation of Nusselt number 

with reduced longitudinal distance, NBr=1 
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Given the results obtained, we can deduce that for a certain value of the rheological coefficient 

n, the temperature of the fluid is increased along the plates. For a given value of the 

dimensionless variable ψ , the temperature of the fluid is increased together with n. As opposed 

to it, the Nusselt number decreases white n increases. The obtained results properly fit the 

results in [2]. 
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Asupra disipaţiei vâscoase în mişcarea fluidelor 

incompresibile printre două plăci plane paralele  cu 

condiţii la limită Dirichlet 
Rezumat 
 

În acest articol este studiată problema disipaţiei vâscoase în mişcarea laminară incompresibilă a unui 
fluid vâscos printre două plăci plane paralele. Se utilizează pentru determinarea temperaturii fluidului 
metoda separării variabilelor. Soluţia problemei se obţine astfel sub forma unei serii după sistemul 
complet de funcţii proprii unei probleme de tip Sturm-Liouville. Funcţiile şi valorile proprii ale acestei 
probleme Sturm-Liouville sunt obţinute cu ajutorul metodei lui Galerkin. 
 
 


