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Abstract 

In the elementary bending theory it is usual to admit the hypothesis of small strains, small enough to 
neglect the transversal stresses induced by severe curvature. It is also admitted that the neutral surface 
coincides, during deformation, with the central plane of the plate. To carry out a mechanical modelling of 
heavy plates bending, in order to for obtain great diameter tube, it is necessary a general theory of plate 
bending, without restrictions regarding the magnitude of strains and curvature; it is also necessary to 
determine the neutral surface movement and the movement of each fibre across the plate thickness. The 
paper presents a model of strains and stresses calculus for a rigid-plastic material and for a hardenable 
material too. An important issue of these calculae is the width determination of the zone where the 
material suffer, during bending, an elongation and compression too and so, the Bauschinger effect has an 
important influence on the mechanical proprieties of tubes. In this zone the material strength after 
bending is less than the plate strength, the strength diminishing being proportional to the width of 
mentioned zone. 
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Notations 

a – internal radius; 
b – external radius; 
h – plate thickness; 
σr – radial stress; 
σθ – tangential stress; 
c – neutral surface radius; 
r – current bending radius; 
k – yielding strength; 
σc – yield stress by uniaxial tension; 
M – bending moment; 
α – bending angle; 
u – internal radial component of displacement vector; 
v – tangential component of the displacement vector;  
L0 – initial length of the plate; 
θ – angle of the radius and the symmetry plan; 
εr – radial strain; 
εθ – tangential strain; 
γrθ – angular strain; 
m – coefficient which described the initial position of the fibre with L0 length; 
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r0 – bending radius correspondent to L0; 
T – tensile force (on width unit) which acts at the plate extremities, being normal to the extreme 

transversal sections; 
q – uniform pressure applied on the internal surface of the plate;  
s – the ratio T/(2 k h); 
σ  – average stress; 
ε  – average strain. 

Stresses and Strains Determination in a Rigid – Perfect Plastic 
Material Subjected to Bending 

I shall consider the bending produced by the moments applied at plate extremities, the state 
being a plane strain one; the material behaves rigid-plastic, without hardening. 

The main stresses in the bending are radial and tangential oriented, as a result of the 
deformation symmetry, and I shall designate them by σr, σθ respectively. 

The equilibrium equation can be written in the radial direction as: 

rr
rr θσσ

d
dσ −

=         (1) 

I shall call by “c” the neutral surface radius, i.e. the radius of the cylindrical surface – including 
those fibres that do not modify their lengths when infinitesimal supplementary deformation 
takes place. 

The fibres placed between the neutral surface and the external surface of the plate are subjected 
to elongation and those placed between the neutral surface and internal surface are subjected to 
compression. 

The yielding condition for the plane strain state is: 

σθ – σr = 2k   for   c≤ r ≤ b                                                       (2) 
σθ – σr = -2k   for   a≤ r ≤ c 

where: 
2
σck = in the case of Tresca criterion, and 

3
σck = , in the case of  Mises criterion, [1]. 

Having in view that σr = 0  for  r = a, b, from (1) and (2) one can obtain 

        
b
rkr ln2σ =    for   c ≤ r ≤ b, 

r
akr ln2σ =    for  a ≤ r ≤ c                                                     (3) 

As the equilibrium condition required σr to be continuous across the neutral surface, one can 
obtain: 

c
ak

b
ck ln2ln2 =  

Thus, the neutral surface radius is given by 
abc =        (4) 

The other main stress component may be obtained from (2) and (3), as 

⎟
⎠
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⎜
⎝
⎛ += 1ln2σθ b

rk     if   c ≤ r ≤ b 

⎟
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⎜
⎝
⎛ −= 1ln2σθ r

ak    if     a ≤ r ≤ c      (5) 
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The variation of σr and σθ across the thickness of the plate is given in fig.1. It can be noticed that 
σr attains a maximum value on the neutral surface and the resultant force acting upon a section 
is given by 

( )∫ ∫ ===
b

a

b

a
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b
rrr

r
r 0σdσ

d
ddσθ

 

where the equilibrium equation (1) is used. 

The bending moment, corresponding to a width unit, is obtained as: 

( )∫ −++==
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b
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lndσ  

and, using (4), on can write: 

( ) 22

2
1

2
1 khabkM =−=       (6) 

Let u dα be the radial component, and v dα the tangential component of the displacement vector 
due to an infinitesimal strain; the bending angle α, calculated for the initial length L0, increases 
by dα. 

Neglecting the elastic compressibility and taking into account that the associated deformation is 
an elongation for r > c, and a compression for r < c, we can consider the following expressions 
[3]: 
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α2
1 ,   

α
θrv =       (7) 

where θ is the angle between the radius and the symmetry plane. Then, the corresponding 
increments of strains have the following components: 

dα1
α2
1dεdε 2

2

θ ⎟⎟
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⎞
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r
c

r
,   dγrθ = 0    (8) 

obtained from the relations [1]: 
 

 
 

Fig.1. σr and σθ distribution in a plate subjected to bending without hardening 
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Using relations (7), we get 
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and 
( ) ( ) 0ddd =−= == arrbrr uuh  

As a result, one can consider h being constant in every configuration, for a non-hardenable 
material; thus, according to (6), the moment of plastically bending does not depend on plastic 
deformation, for such a material. 

From the equality of the final area and the initial area: 

( ) α
2
1

0
22

0 LabhL −=  

the following relation is obtained (for the internal, external radii and the bending angle) 

ba +
=

2α        (9) 

The mechanical work, corresponding to the unit of width, is: 
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In spite of the constant thickness of the plate, the fibres are subjected to complex deformations. 
In (1.8), one can notice that the fibres having r < c are compressed, and those having r > c are 
subjected to an elongation. 

If we consider a fibre in a non – bended plate, at a distance of 
2

mh  from the central plane, the 

following relation can be written, taking into account the equality of areas before and after 
bending: 

22

22
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( ) ( )mabbar 2222
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where 1≤m  and m>0 for a fibre placed between the central plane and the convex part of the 
plate. 

As an example, the final radius of the central fibre, in a non-deformed state, which corresponds 
to m = 0 (see fig. 2), is given by: 

( )22

2
1 barf += > 

2
ba +  

Considering the formula (11) and r = c, one can notice that the fibre which, in the final 
configuration, coincides with the neutral surface, has “m” given by: 

ba
bam

+
−

=  
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Thus, the neutral surface, which before the bending has coincided with the central plane, is 
moving towards the plate inner plane during the plastically bending. 

All the fibres having m ≥ 0 are subjected to elongation and the fibres for which r < c are 
subjected to compression; the fibres for which 

ba
bam

+
−

>>0  

( )22

2
1 barc +<< ,      (12) 

have been surpassed by the neutral surface, so the fibres being subjected firstly to compression 
and afterwards to an elongation. In this zone, the Bauschinger effect can have a remarkable 
importance. 
 

 
Fig.2. The relative movement of longitudinal fibres, during the bending: 

1 – the central fibre (initial); 2 – the fibre having L0 length; 3 – the neutral surface 
 
Every moment, there is a fibre subjected to a compression followed by an elongation; so, the 
present length equals L0 (the initial length). The radius of this fibre is obtained using (9) and is 
given by 

22
1

0
habar +=

+
==

α
       (13) 

and its initial position – obtained using (11) – is: 
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Now, we shall consider that tensile forces T (on width unit) are acting at the plate extremities, 
being normal to the extreme transversal sections. 

The resultant forces must be balanced by an uniform pressure, q, applied on the internal surface 
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of the plate; from the equality of the internal components we can write: 

T = a q       (14) 

The stress components are given, in this case, by: 

b
rkr ln2σ =  

)1(ln2σθ +=
b
rk  

for  c ≤ r ≤ b, 

q
r
akr −= ln2σ  

q
b
rk −−= )1(ln2σθ

 
for  a ≤ r ≤ c                                              (15) 

Taking into account the continuity of σr across the neutral surface, it is obtained: 

k
q

abec 2
−

=         (16) 

So, the neutral surface is moving more, in this case, towards the plate inner planes. 

Further, the displacements are given by the relations (7), but the plate thickness does not remain 
constant because 

( ) dα
α2
1dα

α2
1d 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

−

=
k

q

arr bea
a
cau , 

( ) dα
α2
1dα

α2
1d 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

−

=
k

q

brr aeb
b
cbu , 

from where it can be written 
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The equation (17) expresses the fact that 0
d
d

>
a
h , so – during plastic bending – the plate 

thickness is decreasing. 

If 
a
h  is less than 

5
1 , for example, the thickness variation can be approximated by neglecting σr 

as well as the modification of the state from compression to elongation, for the fibres placed 
between the initial position and the present position of the neutral surface. 

By putting “s” as the ratio T/(2 k h), it is obtained 

a
sh

ka
T

k
q

==
22

,   with   0 ≤ s ≤ 1 

Using (16) and Taylor serial developments for e-sh/a and for 
a
hs)1(1 −+ , the neutral surface 

results to be at a distance of sh/2 to the central surface. 

Identically, from (17) it is obtained 
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If “s” is kept constant during the bending, one can obtain: 

a
shh
2

2

−=Δ , 

relation which allows the calculation of  ∆h in the considered approximation. 

The Determination of Strains and Stresses in a Rigid Plastic 
Hardenable Material Subjected to Bending 

We consider the plate made of a rigid plastic hardenable material. As we have already 
mentioned previously, the fibres can be subjected to complex deformations. According to the 
nature of these deformations, 3 zones can be marked on the plate thickness (fig. 2) i.e.: zone I in 
which the fibres are elongated, zone II where the fibres are subjected to a compression and zone 
III in which the fibres are subjected firstly to a compression, and afterwards to an elongation. 

To calculate the deformation intensity, the way of charging of each fibre must be studied; the 
stress intensity is calculated using the hardening law, which we presume to be of the general 
form: 

)ε(σσσ ==c
, 

where      
θ

2
θ

2 σσσσσ rr −+=   (von Mises)    (19) 

and         'd
3

2d θε=ε ,   ∫ ε=ε d  

For the elongation itself or for the compression itself, one can write: 

∫ ==
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θ lndεε

r
r , 

where r0 is the radius of the fibre having L0 length. So, the strain intensity (for the fibres in 
zones I and II, suffering a one-direction deformation) is calculated by: 

0

ln
3

2)(εε
r
rr ==    (von Mises)      (20) 

The yield condition can be written, for a hardenable material, as: 

)σ(2σσθ kr =−      for    c ≤ r ≤ b 
)σ(2σσθ kr −=−      for    a ≤ r ≤ c                                            (21) 

where 
2
σ

=k  for Tresca’s criterion and 
3
σ

=k  for von Mises’ criterion. 

The σr component is obtained from (1) and (21) by integration, as follows: 
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where c0 ≤ r ≤ b, and 
o in zone II 
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where a ≤ r ≤ c, and ε  is calculated according to (20) in both zones. 

For a hardenable material, c is not known, and for the integration of the following relations 
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r
k

rr
rr )σ(2σσ

d
dσ θ =

−
= , c ≤ r ≤ c0                                                    (24) 

each fibre deformation must be determined. The integration is carried out starting from the 
continuity condition of σr across the surface r = c0, σr being given in (22). 

The procedure is identically applied starting from (23). The calculation finishes if the continuity 
of σr for r = c is verified (see [3]). 

It is necessary to notice that some geometrical relations, established in part 1 are not yet valid. 
Thus, considering the constancy of the area and h as variable, one can write 

α)(
2
1

0
22

00 LabhL −= , 

and 
02α2α 0

2 =−+ hhah       (25) 

The relation (25) allows the calculus of plate thickness in the present configuration, if one 
knows α, a and h0. For a rigid-perfect plastic material, where h = h0, the relation (25) implies (9) 
which can be written 

2α
1)α( 0haa −==                                                         (26) 

All this result for α as the only parameter of plastically bending. 

Using (.25), one can obtain: h < h0, if 
02α2α 0 >−+ ah                                                        (27) 

The condition (27) must be observed in all the cases where a decrease of plate thickness takes 
place. 

Numerical Results 

Firstly, we shall calculate the tube radii, the stresses and strains produced after the bending of a 
plate having L0 = 3780 mm and h0 = 14.3 mm, the plate is made of a steel with the following 
characteristics: E = 205 GPa, ν = 0.29 and σc = 475 MPa (a perfect plastic rigid material). 

If we use Tresca’s criterion, then we can write σc = 2k and 
0

lnε
r
r

= . At the end of the bending, 

0017.0π2α
0

==
L

 the final internal radius is afin = 594.45 mm, according to (26); from bfin = afin + 

h0, one obtain bfin = 608.75 mm. 

The final radius of central fibre in a non-deformed state, is rf = 601.64 mm. 

The neutral fibre is described by (4) and one can obtain cfin = 601.56 mm, and the radius of the 
fibre having the initial length L0 is r0 = 601.6 mm. 

The stress has the following components, at the end of the bending (the values are given in 
MPa): 

75.608
ln475 r    if   601.56 ≤ r ≤ 608.75 

                                  σr =  

r
45.594ln475    if   594.45 ≤ r ≤ 601.56 
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)1
75.608

(ln475 +
r  if   601.56 ≤ r ≤ 608.75 

                                   σθ = 
)145.594(ln475 −

r
 if   594.45 ≤ r ≤ 601.56 

Taking into account the ε  expression and usind Tresca’s criterion, for r = bfin one obtains: 

011.0lnεε
0

θ ===
r

bfin  

and, for r = afin    012.0lnεε
0

θ =−=−=
r

a fin  

The zone I, in which the fibres are subjected to elongation, is described by 601.64 mm ≤ r   
≤608.75 mm. Zone II, of compression, is described by 594.45 mm ≤ r ≤ 601.56 mm, and zone 
III, of mixed stresses, delimited by 601.56 mm ≤ r ≤ 601.64 mm, has a very little width, of 0.08 
mm, i.e. 0.5% of h0. 

If the material is hardenable, following the law:  15.0
c )(22.826 ε=σ   then, assuming that the 

radii afin, bfin and cfin are those previously calculated, σr can be expressed by: 
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Now, we shall consider how the third zone dimension will vary as function of the plate length 
(L0) and thickness (h0), for some examples given in figure 3 and table 1. 

Fig.3. Third zone variation for different plates, L0 = 780-3780 mm and h0 = 14.3 and 25 mm 
 

Table 1. The variation of third zone thickness (III) divided by h0, function of L0 and h0 

L0 [mm] h0 [mm] (III/h0)*100 
3780 14.3 0.59 
2780 14.3 0.81 
1780 14.3 1.26 
780 14.3 2.88 

3780 25 1.04 
2780 25 1.41 
1780 25 2.21 
780 25 5.03 
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From table 1 and figure 3 it is obvious that the third zone thickness increases with the plate 
length decreasing and the plate thickness increasing. So, the contribution of this zone, where the 
Bauschinger effect takes place, to the mechanical properties of rolled tubes becomes important 
for small diameter tubes and large plate thickness. 

Conclusions 

1. It is proposed a model for strains and stresses calculation during the heavy plates bending. 
The strains and stresses are calculated by considering two types of materials: a rigid-plastic 
one and a hardenable one. 

2. The model allows the plate fibres movement description in every moment of the processing. 
So, it is described the evolution of three zones across the plate thickness: zone I in which the 
fibres are elongated, zone II where the fibres are subjected to a compression and zone III in 
which the fibres are subjected firstly to a compression, and afterwards to an elongation, in 
this zone, the Bauschinger effect can have a remarkable importance. 

3. The third zone thickness increases with the plate length decreasing and the plate thickness 
increasing. So, the contribution of this zone, where the Bauschinger effect takes place, to the 
mechanical properties of rolled tubes becomes important for small diameter tubes and large 
thickness plate. 
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Modelarea formării la rece a tuburilor din  table groase 

Rezumat 

În teoria clasică a încovoierii, se foloseşte de obicei ipoteza micilor deformaţii, suficient de reduse pentru 
a neglija tensiunile transversale induse de încovoierea severă. De asemenea, se consideră că suprafaţa 
neutră în timpul deformării coincide cu planul central al tablei. Pentru modelarea matematică a 
încovoierii tablelor groase destinate fabricării ţevilor de diametre mari, se foloseşte teoria generală a 
încovoierii plăcilor fără restricţii legate de mărimea deformaţiilor şi curburii, dar este necesară 
determinarea deplasării suprafeţei neutre respectiv, a fiecărei fibre de-a lungul grosimii plăcii. Lucrarea 
prezintă modelul de calcul al tensiunilor şi deformaţiilor pentru un material rigid-plastic şi pentru unul 
durificabil. Un capitol important al acestor calcule este constituit de determinarea zonei în care 
materialul, în timpul încovoierii, suferă o alungire urmată de compresiune şi ca urmare efectul 
Bauschinger are o importantă influenţă asupra caracteristicilor mecanice ale ţevii. După  încovoiere, în 
această zonă, rezistenţa materialului este mai redusă decât rezistenţa globală a plăcii, reducerea 
rezistenţei fiind proporţională cu lăţimea zonei menţionate. 


