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Abstract 

The water separation from the natural gas transported through major pipes can be made by the means of 
the separators, or even through sections of curved pipe that gives the water particle a centrifugal effect. 
This type of effect depends on the geometrical characteristics of the curved section of the pipe, or 
separator, on the type of transportation for the gases in the pipe as well as on the specific mass 
differences between liquid water and natural gases which present the transporting element for the water 
particles found in the pipe. 
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The Hydrodynamics of the Water Separation Using Curved or 
Centrifugal Separators 

The use of the separators in the shape of a tor sector may lead in certain situations at a good 
separation of the water from the gas body. A tor sector is represented in figure 1 where, through 
d we marked the interior diameter of the pipe, and through R a curved radius of the pipe’s 
spindle. 

 
Fig. 1 

In the case of such a separator, we must establish very clearly the influence the curved radius R 
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can generate, the circle sector angle α on which it is developed the curved section of the pipe 
according to the gas speed at the entry in the separator. Such separator gives to the gases a circle 
movement, and, at their turn, they transfer it to the water. 
In the curved section of the pipe a modification on the speed distribution occurs and its effect is 
the separation of the water from the gases mass. Thus, the speed compound vz=0 and vr and vθ 
compounds are considered for the gases and rpv  and pθv  for the water particle. 

The vθ compound assimilated as being generated by the movement of a whirlpool with the 
centre in O and Γ  intensity, the latter being determined from the fallowing equation. For a fixed 
value of the θ  angle ( )α≤θ≤0 , we can write the continuity equation in the following manner 

  Ad
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dvv

4

2

∫∫ θ=
π

, (1) 

where dA is the extent element perpendicular on the compound vθ, v represents the advancement 
current speed before its entry in the curved area. Section A-A from figure 1 is rendered by 
figure 2. 

 
Fig. 2 

The vθ compound, as well as the radial vr  is determined admitting the fact that the movement in 
the curved area is generated by the complex potentiality  
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represent the speed’s potential function and, respectively, the current function of the potential 
movement. The vr and vθ compounds have the fallowing values 
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The results obtained are identical with the ones given by the literature in the field [15, 21], 
where it is considered a null compound for the radial direction, and on the tangential direction 
the product =⋅ rrv constant. 
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The constant form the previous equality is calculated by the help of the continuity equation 
written under the form (1). The right member of the equation mentioned before becomes 
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where the following mark has been introduced 20 /dR = . 

The integral must be firstly made in relation with the y variable and then with x. As compared 
with the first variable, (y), the integral is easy to solve and can be found in 
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We can suppose that we do not introduce a too large error if we replace 
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which leads to the solving of the integral from (5). After a simple calculation we obtain the 
following result 
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Taking into consideration the equation (5), the value of the constant defining the intensity of the 
circulation results 

  v
42 0R
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and the absolute value of the tangential speed will be 
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where the variable radius is situated between  22
0 xRR −+  and 22

0 xRR −− . 

The conclusion is consequently that in the spindle of the curved pipe the average radius is R 
which renders  
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The greatest speed (vi) is obtained for 0RRr −=  and the weakest for (ve) at 0RRr += . This 
means that the ratio of the two speeds is 

  
0

0
v
v

RR
RR

i

e
+
−

= . (11) 

The result previously obtained indicates that the more the curved radius R of the separator is 
reduced at the same dimension as the one of the pipe, the lower the tangential speed; precisely 
in certain cases ( )0RR ≤  the ve speed can have a negative value. This means that at very tight 
bends the particle can be given a vice-versa movement than the movement it fallowed when she 



Silviu Al. Stan, Alecsandru D. Stan, Cornel Trifan 

 

46

entered the separator. This effect may be applied to the water particle when the radius of the 
transportation pipe is superior to the curved radius of the same pipe. 

The Centrifugal Effect on the Separation of the Water Particles from 
the Gas Flow 

In the situation previously accepted, namely that the separator lays in the horizontal position the 
movement equation written on the radial direction will be 
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where CD is calculated by the help of one of the relations given in [18,21], namely: 
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If, instead of the mass we introduce ( ) 63 /d ap ρ−ρπ  it will immediately result the differential 
equation 
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vr stands for the radial speed of the fluid, vrp –the radial speed of the particle and ω  - the angle 
speed at which the water particle is subjected at. 
The radial speed of the fluid can be neglected in relation to the one of the particle. The radius r 
stands for the radius at the material point of the turning spindle. As we have indicated already, 

0v ≈r  or at least it has an extremely low value, consequently it can be immediately written as 
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The CD coefficient presents values corresponding to the four stages underlined by the Reynolds 
number Rep, according to the formulas (13). 
The differential equation (15) is integrated with the following initial conditions: 

  at t = 0,  0
d
vd

=
t
rp  and 0v ω=rp  (16) 

0ω  is considered an angle reference speed. We notice that t/rrp ddv = , which makes 
possible the writing of the same equation under the form of 
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Its solution is acknowledged by [12, 30] under the form 
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where A and B are two integration constants and  
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which, in this way, are known.  
Using the same initial conditions (16) the following integration constants result  
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which makes that the particle speed in the radial direction to be  

  ( )tt
rp ee αβ β−α

β−α
ω

= 0v . (21) 

The equal distance with the interior diameter d of the pipe is travelled by the water particle in a 
T timer which satisfies the relation 
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rpdv
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and if the expression of the speed in the last equation is replaced we get 

  ( ) ( ) ( )[ ]11 220 −β−−α
βαβ−α

ω
= αβ TrTr eed . (23) 

The exponential are approximated according to the rapport frequently used in engineering 
calculations, namely xex +≈ 1 , so that the result is that d has the following expression  

  rTd 0ω= . (24) 

On the other side, in the Tr time period the particle travels the la length that can be calculated 
with a great precision by using the relations established according to the Reynolds number of 
the Rep particle. 
If we acknowledge that we can use the relation  
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then the length of the arc la is equal to l1 given by the relation 

  Tl pa 01 v= . (26) 

In the case in which for l1, it is chosen the same approximate value, meaning l1a, then the size 
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order of the arc’s length la is  

  
0

0v
ω

p
a d~l . (27) 

The minimum angle at the centre αmin can be replaced in the previous relation because 
Rla minα=  and, thus we have 
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R
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Consequently, we may understand that a separator made of a curved pipe with a radius R with a 
circular section becomes efficient only if the angle at the centre α satisfies the condition (28). 
This presumption raises problems related to the initial speed 0ω , because for vp0 we can take, 
for the safety of the calculations, even the average speed of the gases in the section of the pipe. 

As for the measure order of the speed 0ω , we can apply the impulse conservation theorem in 
the initial moment, and the result is summed up by the following formula 
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which leads to the relation 
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where we have accepted that the tangential speed is equal to the average speed of the v gas.  
Consequently, the minimum angle, αmin will be of at least 
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By appreciating the value of the water particle, of the pipe’s diameter and of the curved radius, 
for example, dp=0.006 m, d=0.4 m and R=1.2 m, we have as a result the value of the angle 

  774.5
006.0
2,1

2
3

2.1
4.0

min =×=α  rad. 

If dp=0.004 m and the other measures remain unchanged it results that αmin=7.071 rad. The 
results depend on the three variables (d, R and dp). Amongst these, the most difficult estimation 
is to be made for the particle’s diameter, dp. If this variable grows, the angle αmin is reduced, 
which means that the force put on the particle grows and vice versa, if dp tends toward zero αmin 
will have very high values. 
In the same time, we can easily notice the fact that the curved infinite radiuses αmin present very 
high values which means that the effect of the centrifugal separation is null. 
The existence of a curved area makes that the specific section of the pipe to produce a 
supplementary loss of pressure which can be calculated by the classical relation  

  ξρ=Δ
2

v2
p , (32) 

where the local strength coefficient ξ  is determined for the case in which dRd 52 ≤≤ , using 
the relation [2, 16] 
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For a curved area it is possible to apply the calculation formula λρ=Δ
d
lp

2
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, where the 

hydraulic strength coefficient λ  is determined by the use of the relation  
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The results obtain by the intermediary of the previous relation are in a good agreement with the 
experiments for the situation in which  
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Re being considered to be the Reynolds number defined by the average speed of the gas and the 

interior diameter of the pipe. For lower values than 0.034 of the 
2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
R

dRe parameter the 

hydraulic strength parameter can be calculated from a rectilinear pipe. 
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Efecte hidrodinamice la separarea apei în secţiunile curbe ale 
conductelor de gaze naturale 

 
Rezumat 
 
Separarea apei se poate efectua utilizând separatoare, sau chiar porţiuni din conductă, de formă curbă 
care imprimă particulei de apă un efect centrifugal. Acest efect este dependent de caracteristicile 
geometrice ale porţiunii curbe din conductă, de regimul de transport al gazelor prin conductă precum şi 
de diferenţa de greutate specifică dintre apa lichidă şi gazele naturale care reprezintă pentru particulele 
de apă elementul transportor din conductă. 


