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Abstract 

The goal of paper is to present the models of the asynchronous machine and their calculation by using the 

software of Matlab. Paper is a connection between the theory of the asynchronous machine and the data-

processing programming. It was illustrate the effect of the approximations made to obtain the 

mathematical models and their influence in the tracing of the characteristics of operation.  
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Introduction 

Induction machines are the most widely used of all electric motors. They are simple to build and 

rugged, offer reasonable asynchronous performance: a manageable torque-speed curve, stable 

operation under load, and generally satisfactory efficiency. The difficulty with using this 

machine in variable speed drives is that they are hard to control, since their torque speed 

relationships is complex and nonlinear. In this paper we develop models to control the 

asynchronous motor. 

To start the analysis of this machine, assume that both the rotor and the stator can be described 

by balanced, three - phase windings. The two sets are coupled by mutual inductances, which are 

dependent on rotor position. To simulate the behavior of an asynchronous machine, we must 

adopt a physical model bringing into discussion the principal electro-mechanical characteristics. 

The equivalent schemas used in the study of the asynchronous machine are very important to 

establish the performances of the machine. Their complexity causes the approximations 

obtained. 

The first order model of the asynchronous machine 

The first order model is the 'steady state' model, which assumes that the electrical states reach 

steady state much more quickly than the mechanical state.  

It is known from literature [1] that the generalized equivalent schema in transient regime is, 

without restrictions, like in figure 1. 
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Fig.1. Generalized equivalent schema of an induction machine. 

 

The parameters are those from the literature [1] and are given by: 
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 Considering differentα , results that there are possible an infinity of equivalent schemas 

with representative phasors, which allowed the analyses of transient process. 

 In a referential which is solidar with the stator ( 0=
B

ω ) and for a short-circuiting rotor 

( 0' =
αr

u ), is obtaining the equivalent schema from figure 2.  

 

 

Fig. 2. Generalized equivalent schema at 0=
B

ω and 0' =
αr

u . 

 

The equations system for this schema is:  
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In sinusoidal, symmetric regime:  
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and the general equations (1) became:  
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Evidencing the slip, system (2) became:  
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where:  
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Equations (3) are descried by equivalent schema from figure 3.  

 

 

Fig. 3. Generalized equivalent schema for the stationery regime.  

  

From the schema 3, after immediate calculus it is obtained: 
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Terminal current is:  
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The expression of torque, used for the simulation in Matlab, is: 

1Ω
= MP

M          (7)  

The equation of motion is: 

)(
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Jdt

d
−=

ω
        (8) 

Numerical method used to solve the mathematical model.  

Numerical method used to solve the mathematical model is ode23, which is an implementation 

of an explicit Runge-Kutta (2,3).It is a one-step solver which solves initial value problems for 
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ordinary differential equations (ODEs). Its syntax is: 

[T,Y] = solver(odefun,tspan,y0) 

where:  

odefun- is a function that evaluates the right-hand side of the differential equations. The ode23s 

solver can solve only equations with constant mass matrices;  

tspan – is a vector specifying the interval of integration,  

[t0,tf]. y0 – is a vector of initial conditions. 

The default integration properties in the ODE solvers are selected to handle common problems. 

We can improve ODE solver performance by supplying the solvers with one or more property 

values in an options structure: 

[t,y] = solver(odefun,tspan,y0,options) 

The odeset function creates an options structure that we can pass as an argument to any of the 

ODE solvers. To create an options structure, odeset accepts property name/ property value pairs 

using the syntax: 

options = odeset ('name1',value1,'name2',value2,...) 

In the resulting structure, options, the named properties have the specified values. Any 

unspecified properties contain default values in the solvers. For all properties, it is sufficient to 

type only the leading characters that uniquely identify the property name.  

At each step, the solver estimates the local error e in the ‘i
th’

 component of the solution. This 

error must be less than or equal to the acceptable error, which is a function of the specified 

relative tolerance, RelTol, and the specified absolute tolerance, AbsTol. |e(i)|  

max(RelTol*abs(y(i)),AbsTol(i)).  

For the absolute error tolerance, the scaling of the solution components is important: if 

|y| is somewhat smaller than AbsTol, the solver is not constrained to obtain any correct 

digits in y. It might have to solve a problem more than once to discover the scale of 

solution components. This means that we want RelTol correct digits in all solution 

components except those smaller than thresholds AbsTol(i). Even if we are not 

interested in a component y(i) when it is small, you may have to specify AbsTol(i) 

small enough to get some correct digits in y(i) so that we can accurately compute more 

interesting components. 

Simulations and results 

The theoretical aspects shown hereinbefore are applied for an asynchronous motor with the 

following rated values:  

Pn = 4 kW;   Un = 220/380 V;   m = 3;   f = 50 Hz;   p = 2;   J = 0,024 kg m2; Rs = 1,16 Ω ;   
'
rR  

= 3,515 Ω ;   σsL = 0,024 H;   
'
rL σ  = 0,0034 H;   Lsh = 0,2986 H. 

Using the software of Matlab we solve the differential equation (12) and plot the speed n(t), the 

torque M(t), and the current I1(t) for the asynchronous motors : 
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Fig. 4.  Speed curve: n(t). 

 

Fig. 5. Torque curve M(t). 

 

Fig. 6. Current curve I1(t). 
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The simulations were made for a load torque proportional to speed squared. Using this model 

we can change the different parameters of the machine to see its behavior. The errors introduced 

by this model are much greatest than the errors introduced by the other models of the machine.    

Conclusions 

The computational modeling of the induction machine offers much information about the 

behavior of this and let us to anticipate their operation in different situations.  
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Modelarea numericǎ a maşinii asincrone folosind programarea în 

Matlab. Modelul de ordinul întâi  

Rezumat 

Scopul acestei lucrǎri este de a prezenta modele ale maşinii asincrone şi calculul lor numeric folosind 

programarea în Matlab. Lucrarea este o conexiune între teoria maşinii asincrone şi programare. Este 

ilustrat efectul aproximǎrilor fǎcute pentru a obţine modelele matematice şi influenţa lor asupra trasǎrii 

caracteristicilor de funcţionare.   

 

 


