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Abstract 
 
The paper deals with speed vector-controlled induction motor drive systems, in which the rotor flux 

estimation is performed using Luenberger and Kalman estimators. A comparative study of the stability of 

the estimators and of the control systems which are included in the control loop is presented using both 

simplified and full discretisation method and modifying the sampling time used for each of the methods. 

The study is focused especially on the low and high speed regions. The conclusions are based on the 

comparing of the eigenvalues of the estimators in each studied case. 
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Introduction 

The paper deals with speed vector-controlled induction motor drive systems, in which the rotor 

flux estimation is performed using Luenberger and Kalman estimators. A comparative study of 

the stability of the estimators and the control systems which are included in the control loop is 

presented, taking into account the followings: 

- The motor is a squirrel cage induction motor; 

- The stability study is performed taking into account various motor speed and sampling time 

variations, both in the presence and in the absence of the measuring and process noises. The 

study is also taking into account the degree of discretisation of the considered models; 

- The tuning parameters of the controllers in the vector control scheme are computed for a 

direct flux measuring control scheme oriented on the rotor flux. These parameters are the 

same both for the control scheme that uses a Luenberger estimator and the one using a 

Kalman estimator; 

- The stability study of the estimator is performed taking into account the control loops. 

The Kalman Estimator 

The mathematical model of the Kalman estimator is deduced based on the stochastic model of 

the induction motor, a mathematical model given by the canonic state equations: 
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in which the noise vector of the process  w(k) and the measuring noise v(k) are considered as 

Gauss type vectors having the following properties: 

 
where E is the statistic average and * is the Kronecker operator. 

The matrices Fk and Hk are deduced from the matrices Ak and B of the induction motor model in 

time domain by discretisation. In practice two of such models are imposed: one deduced by 

complete discretisation that makes the Kalman estimator more precise but which requires much 

more computing resources: 

 
And other obtained through simplified discretisation that makes the Kalman estimator to be less 

precisely, but which does not require high computing resources: 

            
In formula (3) and (4) the T variable is the sampling time and the A, B and C matrices have the 

following shape 

   
where: 

 

 

 
Ls, Lr, Lm are the stator, rotor and mutual inductances;  Rs ,  Rr are the stator and rotor resistances 

and σ is the mutual dispersion coefficient. 

In these conditions, considering the sizes of the input vector, the input stator voltages with 

respect to the oriented axis system dq: 

                 
the sizes of the state vector, the stator currents and the rotor flux in the oriented axis system dq: 
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and the dimensions of the output vector, the stator currents in the oriented axis system dq: 

 
the Kalman estimator algorithm becomes: 

                    

where: K( k) is the Kalman matrix; ) )/(
^

kkx  is the estimated state vector at the moment Tk ⋅   ; 

Γ(k/k-1) is the aprioric covariant matrix of the extrapolated state )1/(
^

−kkx  and P(k/k) is the 

aposterioric covariant matrix of the estimated state )/(
^

kkx . 

The estimation error of the Kalman estimator is:  )/()()/(
^~

kkxkxkkx −= and the initial 

conditions are P(0/0) = P0 and 0

^^

)0/0( xx =   where 0

^

x    is considered to be a 0 vector and P0 is 

determined as a solution of the Riccati equation of the estimator. The covariance matrices Q and 

R are constant and are tuned according to the following formulae [3]: 

                       

where: σu is the variant introduced by the input  us ; σi and σψ  are the variants introduced by the 

state vector components (is and ψr); 

The Luenberger Estimator 

As in the case of the Kalman estimator, the equations that define the Luenberger estimator are 

deduced based on the mathematical model of the induction motor, model given by the canonical 

state equations (1) in which the noise vector of the process w(k) and the measuring noise v(k) 

are considered 0 vectors. Based on the above data, the Luenberger estimator model becomes: 

 
where the matrices F k   and  Hk are deduced from the matrices A and B of the induction motor 

model in time domain by discretisation, using one of the methods given by the relations (3) or 

(4). 
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The most common method for the on-line computing of the Luenberger matrix is the using of 

the formula that ensures the proportionality between the motor poles and the estimator ones. 

These formulas are deduced in the continuous case, obtaining the matrix L, from which, by 

discretisation, the  Lk  matrix is deduced. 

By ensuring the proportionality, the result is the stability of the estimator, without influence of 

the speed  ωk. Obviously the proportionality will not be maintained after the discretisation, but 

the stability will be. The mathematical expression of L matrix is: 

 
where: 

 

 
and 

 
From (11) by discretisation one can get: 

 
the Luenberger matrix deduced after the complete discretisation, respectively 

                                                 
the Luenberger matrix obtained after the simplified discretisation. 

The estimation error of the Luenberger estimator is: 

 

The Stability Study of the Control Systems 

The algorithm used in the stability study of the control systems having in the control loop 

Kalman and Luenberger type estimators is the one described in paper [4]. The stability study is 

based on the determination of the eigenvalues of an increased matrix. The matrix on which the 

study is performed is: 

                          

where:  Ma is the command matrix that ensures the connection between the input values vector 

and the estimated state values vector and Ka  is equal to the Kalman matrix  K (k) the case of the 

stability study of the control system that contains a Kalman estimator in the control loop, 

respectively with the Luenberger matrix  Lk  in the case when the control system 

contains a Luenberger estimator in the control loop. 

The relation that the command matrix  Ma must verify is: 
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The matrix Ma that verifies the relation (15) has the following structure: 

 

Application 

As an example for the above theoretical issues a squirrel cage induction motor whit is 

considered, with the following parameters: PN = 500 [W]; UN = 127 [V]; I N = 2,9 [A]; nN = 1400 

[rot/min];  zp=2 ; MN=3,41 [ Nm] ;  R s = 4.495 [Ω];  R r =5.365[Ω]; Ls = 165 [mH]; Lr = 162 [ 

mH] ; Lm = 149 [mH]; J = 0.00095 [ Kgm
2

]. 

The stability study has been performed using real-time simulation in Matlab/Simulink 

environment using S-Function blocks. It has to be mentioned from the start that for 

several reference speed tahograms and for several controller tuning parameters, the 

eigenvalues of the control systems that contain in the loop one of the two estimators will 

be different during the transient states. For this reason the tuning parameters of the 

controllers used in the speed control system will be identical in both Kalman and 

Luenberger estimator based drives. The tuning parameters of the PI controllers were 

computed for a control structure with direct airgap flux measurement and orientation on the 

rotor flux. 

The values are: 

- For the speed regulator: the proportional component k ω = 10 and the time component is      

Tω =  9000 [sec] ; 

- For the torque regulator: the proportional component k M  = 10.1988 and the time 

component is T M = 1020 [sec]; 

- For the current regulators: the proportional component k I  =5.9881 and the time component 

is T I  =  754.4176 [sec] ; 

- For the flux regulator: the proportional component 3834 . 501 = k ψ  and the time component 

is  T ψ  =  2374.7 [sec]. 

Similar to the case of the tuning parameters of the regulators, the tahogram of the control system 

reference speed will be identical in all cases of stability study, with respect to the increase time 

of the speed to the reference speed value. In all cases the increase time is one second without 

influence from the imposed reference speed value. 

Taking all these into consideration, the first studied case is the Luenberger and Kalman 

estimators implementation using full discretisation method. The stability study in this case is 

performed at very high speeds and a very small sampling time, neglecting the measurement 

noise. The simulation results presented in Figure 1 and Figure 2 have been obtained at the 

reference rotation speed of 30000 [rot/min] and in the case of the Luenberger estimator at the 

value 1.3 for the k coefficient. In these diagrams the open loop eigenvalues of the estimator are 

presented in black, the motor eigenvalues in blue and the eigenvalues of the control system that 

contains one of the two estimators in the loop are presented in red.  

The sampling time used is T= 53.3 [µ sec], specific to the TMS320F2812 processor, when a 

frequency of 18.75 [kHz] is required for the inverters IGBT commutation. Comparing the two 

diagrams one can see that the Luenberger estimator in open loop approaches the stability limit 

becoming unstable from the rotation speed of 22800 [rot/min] while the Kalman estimator in 

open loop is behaving very well even at the imposed reference speed. On the other hand the 
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control system that contains the Luenberger estimator in closed-loop as well as the control 

system that contains the Kalman estimator in closed-loop will be internally stable. It can be seen 

that at the starting moment of the motor the control system becomes unstable and as the speed 

of the motor shaft approaches the reference speed it becomes internally stable. From the point of 

view of the dynamic performances it is noticeable the fact that when the eigenvalues of the 

motor are on the right side of the eigenvalues of the estimator the dynamic performances of the 

control system are very good. Comparing the two diagrams from this point of view one can state 

that the Luenberger estimator is behaving very well from the stability point of view, as well as 

from the dynamic performances ones, up to the speed of 12000 [rot/min],while the Kalman 

estimator is behaving very well on the entire range of speed variation. At speeds higher than 

40000 [rot/min], both Kalman estimator and the system that contains the Kalman or Luenberger 

estimator becomes unstable. 

 
 

Fig. 1. The eigenvalues for the case with the 

Luenberger estimator used for the first case 

Fig. 2. The eigenvalues for the case with the 

Kalman estimator used for the first case 

 

  
Fig. 3. The eigenvalues for the case with the 

Luenberger estimator used for the second case 
Fig. 4. The eigenvalues for the case with the 

Kalman estimator used for the second case 

The second studied case is the one when the complete discretisation method is used for the 

implementation of the Kalman and the Luenberger estimators but the sampling time used is 

higher. In this case the process and measurement noises are also neglected. After the simulation, 

using a sampling time T = 426.7 [µ sec] corresponding to the above stated processor, for an 

inverter IGBT with commutation frequency of 2.34 [kHz] the following diagrams, 

corresponding to the Luenberger and Kalman estimators, are obtained (Figure 3 and Figure 4). 

The reference speed imposed in this case is 10000 [rot/min]. It can be pointed out that the 

instability of the Luenberger estimator and of the control system that contains a Luenberger 

estimator in the control loop appears at a speed much lower that in the case when a smaller 

sampling time is used. As in the previous case, a phenomenon appears that imposes the 

eigenvaluesof the estimator to remain behind the eigenvalues of the motor, phenomenon that 

produces the decrease of the dynamic performances. This is happening at the moment when the 

speed increases over 5500 [rot/min] in the case of the Luenberger estimator and over 9000 

[rot/min] in the case of the Kalman estimator. As in the previous case, at the starting point, the 

control system in unstable tending to become internally stable while the motor shaft speed is 

getting closer to the reference value. The control systems become unstable at speeds close tothe 

reference speed immediately after the loss of the dynamic performances of the estimators. 
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The third case is when the simplified discretisation method is used for the Luenberger and 

Kalman estimator implementation. Here, the sampling time used is the same with the one used 

in the first case. The stability study is done neglecting the process and measurement noises at a 

speed of 10000 [rot/min]. After the simulation results are presented in Figure 5 and Figure 6. 

Comparing the two diagrams it can be observed that the effect of the simplified discretisation 

resembles the one of the utilization of a higher sampling time. The speed at which the estimator 

instability appears is higher in this case that in the previous one. In this case the control system 

enters the instability state at medium speeds, that makes this discretisation method impossible to 

be used in the control systems at high speeds. In all the presented cases the stability analysis of 

the Luenberger estimator was done for a k coefficient equal to 1.3. 

Finally, the eigenvalues of the estimator and the control systems that includes a Luenberger 

estimator in the loop are presented, using k=20. The real time simulation results for the above 

case are presented in Figure 7. 

 

 

Fig. 5. The eigenvalues for the case with the 

Luenberger estimator used for the third case 
Fig. 6. The eigenvalues for the case with the 

Kalman estimator used for the third case 

 
Fig. 7. The eigenvalues for the using the Luenberger estimator with k = 20 

The stability study in this case was performed for a complete discretisation using the same 

sampling time used in the first case. The study was also performed neglecting the process and 

measuring noises, for a reference speed of 10000 [rot/min]. It can be noticed that the estimator 

and the control system enter the instability state immediately after the rotation speed of 5129 

[rot/min] is overcome. It can be stated that as k is greater the rotation speed where instability 

appears is lower. 

When the stability study is performed in the presence of the process and measurement noises, 

the eigenvalues diagrams are almost identical with the exception that the speed limit at which 

the dynamic performances are satisfactory decreases. This is happening more obviously in the 

case of the estimators and the control systems with Luenberger estimator in the control loop. 

Conclusions 

In the case of the estimator and the control system that includes a Luenberger estimator in the 

control loop it can be pointed out that the estimator becomes unstable for high speeds. When the 

simplified discretisation is used the stability appears faster, also influenced by the k 
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amplification factor. This is also valid for the control system, because it becomes unstable as 

soon as the dynamic performances of the estimator are worsening, otherwise stated when the 

eigenvalues of the estimator remain behind the eigenvalues of the motor. 

In the case of the Kalman estimator the conclusions are identical with the difference that the 

rotation values at which the estimator and the control system instability appears are much 

greater that in the case of Luenberger estimator. It can be noticed that when using a high 

sampling time, the eigenvalues of the motor, the estimator and some of the eigenvalues of the 

control system are almost identical, the only difference being athigh speeds where the dynamic 

performances of the estimator decrease. 

By comparing the two estimators and control systems we can admit without any doubt that the 

estimator and the control system that includes a Kalman estimator in the loop are superior to the 

ones with a Luenberger estimator. The only disadvantage is the greater computing effort as well 

as the tuning of the covariance matrices Q and R. 

Based on the presented algorithm, a real time simulation with hardware included in the control 

loop can be performed and it will allow the obtaining of the eigenvalues of the estimator, motor 

and control loop in various functioning regimes of the motor. 
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Studiul comparativ al sistemelor de control vectorial cu ajutorul 

estimatoarelor de flux Luenberger şi Kalman 

Rezumat  

Articolul se ocupă de studiul comparativ al sistemelor de control vectorial al motoarelor asincrone 

utilizând, ca estimatoare de flux rotoric, estimatoarele Luenberger sau Kalman. Studiul are în vedere 

domeniile vitezelor joase şi înalte. Se compară valorile proprii ale estimatoarelor pentru  fiecare caz 

studiat. 


