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Abstract 

This paper deals with the generalized predictive control applied to an induction drive with vector control 
and static torque, with constant and speed proportional component. First, it is defined a reduced model of 
the ensemble formed by the drive and the vector electronic control and then are presented the generals 
characteristics of the generalized predictive control that are applied to considered drive speed control. 
Finally, using Matlab-Simulink environment are presented and then are analyzed the performances. 
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Mathematical Drive Model  

Let us consider a three-phase induction motor with sa , sb  and sc the stator phases and ra , rb  

and rc  the rotor phases (Fig. 1). The time variable electrical angleα , defines the instantaneous 

position between magnetic axes of sa  and ra  phases chosen as reference axes, and d  axis of 

the orthogonal axes reference system d q− . The angles sα  and  rα  are the angles between a 

stator phase respectively a rotor phase with d  axis of  the orthogonal reference system d q− . 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Explanatory for the position of  the system        Fig. 2.  Explanatory for the position of  

            of stator and rotor axes for an induction motor   reference system related to rotor flux 
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where ( , )x y  is the axis system related to stator and ( , )d q  the axis system related to motor 

rotating field. The induction motor equations, without saturation are 
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where sR  and rR  are the resistances for one stator phase respectively one rotor phase; mnU , 

mni , mnψ  are the voltages, the currents and the flux (m index denotes a, b or c phase and n index 

denotes the stator or the rotor). The relations between fluxes and currents are given by the 

equations (2) where asL , arL  are the inductances for one stator phase respectively one phase 

inductances rotor; masL , marL are the mutual inductances between two stator phases 

respectively rotor phases; mrsL  is maximum mutual inductances. 
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Park transformation turns the stator and rotor windings into orthogonal equivalent windings. 

Thus,  the sa , sb  and sc  windings are changed by two equivalent windings sd  and sq , and the 

rotor windings ra , rb  and rc  by the equivalent windings rd  and rq .  Choosing a reference 

system related to the rotary field such as 
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where sp  are the number of stator poles pairs and rw , sw  are the mechanical and electrical 

angular speed, the equations (1) becomes: 
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The differential equation of the movement for a  rigid coupling is 
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  0 1e s e
d

J M M M M K
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ω
ω⋅ = − = − − ⋅ ,                                    (5) 

where 0M  is the constant component part of the static torque sM ; 1K  is a proportional 

constant; eM  is the electromagnetic torque; ω is the angular speed.  

The electromagnetic torque eM  can be expressed by currents  

 ( )e s m sq rd sd rqM p L i i i i= ⋅ ⋅ − ⋅                              (6) 

The relations between fluxes and currents in Park model are 

 sd s sd m rdL i L iψ = ⋅ + ⋅ ,  sq s sq m rqL i L iψ = ⋅ + ⋅ , 

 rd m sd r rdL i L iψ = ⋅ + ⋅ ,  rq m sq r rqL i L iψ = ⋅ + ⋅ ,          (7) 

where: sdψ , sqψ , rdψ , rqψ  are the stator and rotor fluxes along the axes d  and q ; sdi , sqi , 

rdi , rqi  are the stator and rotor currents along the axes d  and q ; sL  and rL  are the inductivity 

of the stator and rotor windings; mL is the periodical mutual inductivity between the stator and 

the rotor, such as 

 s as masL L L= − , r ar marL L L= − , 3/ 2m mrsL L= ⋅ .  

Chosen a reference position such as the axis d is along the rotor flux vector rψ  (Fig.2), then the 

vector control will allow the rotor flux regulation by controlling the current sdi  and the 

electromagnetic torque developed by the motor. If it is considered an induction motor with short 

circuit rotor ( 0ru = ), and if the rotor flux vector is along d axis of the ( , )d q  axes system, 

then the q axis flux component part is null 

 0r rdq rd rqψ ψ ψ ψ= = ⇒ = . (8) 

and the equations (4) becomes 
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Replacing the fluxes in equations (9) by theirs expression, these becomes    
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and the electromagnetic torque is 

 m
e s rd sq

r

L
M p i

L
ψ= ⋅ ⋅ ⋅ .    (11) 

The rotor currents expressions will be resulted from the equation (7) and these will be replaced 

in equations (10). It is obtained [1], [2] 
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where the angular speed sω  is given by the relation (13) 
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and 
2(1 /( ))m s rL L Lσ = −  is the dispersion coefficient of the induction motor. Noting the ratio 

/s sL R  and /r rL R  with Ts and Tr (stator and rotor electromagnetic time constant) and taking 

into account the electromagnetic torque expression and the equations (12), is determined the 

block structural schema of the induction drive, illustrated in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3. The block structural schema of the induction drive. 

 

Decoupling by a state feedback allows canceling the q axis action over the d axis, by a 

state feedback, keeping the rdΨ  flux constant (Fig. 4).  
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Fig.  4. The block structural schema of  the drive with feedback state decoupling 

and static torque with constant and speed proportional component. 

In a circuit feedback requiring that the rdΨ  flux is the same, using the voltage ud, the equations 

(12) become 
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Fig.  5. The block structural schema of an induction drive with rdΨ constant flux. 
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To get the simplified model of the induction drive it is considered that the flux has a constant 

value and from the equation (13) results  
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q s r sq s s rd
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σ ω

 
= + + + Ψ 
 

.                              (15) 

The block structural schema of the induction drive after q axis is reduced to the block 

structural schema illustrated in Fig. 6. 

 

 

 

 

 

 

Fig.  6. The reduced block structural schema of an induction drive with static torque, with constant            

and speed proportional component, a) non-masked schema ; b) masked schema. 
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and the angular speed ωs is estimated taking into account the equation (13), by (Fig. 6a) 
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Starting from the reduced drive model defined in q axis, it is established the transfer function 

( ) 2
2 1/( 1)H s b a s a s= + +  represented by the input-output block structural schema (Fig. 6.b), 

where ω is the motor angular speed, Uq is the motor applied voltage and the a1, a2, b coefficients 

that characterized the transfer function in time range, are 
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Generalize Predictive Control 

Although, many of the self-tuning control structures use a CARMA (Controlled AutoRegressive 
Moving Average) type model, this model is inadequate for many of the industrial applications 

where the disturbances are unsteady (random steps at random time moments). The considered 

model by the generalized predictive control, is a CARIMA model (Controlled AutoRegressive 
and Integrated Moving Average), of type 

 ( ) ( ) ( ) ( )
( )1 1 1

e
e e

kT
A q y kT B q u k T

ξ− −= − +   ∆
                    (18) 

with : y(kTe) and u(kTe) are the input respectively the output of the process, ( )ekTξ is a  

sequence of independent random variables, having the null mean and finite variance 

(inadequate), Te is the sampling period, 
11 q−∆ = − is the differentiation operator and q-1 is the 

step delay operator, a Te period. The A(q-1) and  B(q-1) polynomials are such as 
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n
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where na and nb are the A and B polynomial degrees. 

Because the A(q-1) polynomial is non-zero, the predictive output of the process at the (k+j)Te 

discrete time moment is 
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The term
11/( ( ) )A q− ∆ , can be factorize in two terms by means of Euclid algorithm that allows 

the division by 1 of the A(q
-1

) ∆  polynomial, until j number order [4], [5], [6] : 

1 1 1 11/ ( ) ( ) ( ) / ( )j
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1 1 1( ) ( ) ( ) 1j
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the Ej and Fj polynomials having ( j-1) polynomial degrees (j is a prediction interval also called 

output prediction horizon) and respectively n. The predictive output at the (k+j)Te time moment 

is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 11e e j e j e
j

y k j T E q B q u k j T F q y kT E q k j Tξ− − − −+ = ∆ + − + + +            (21) 

The predictor that takes into account the known information at the kTe discrete time moment is 

 ( ) ( ) ( ) ( ) ( )1 1
e e j e

j
y k j T G q u k j T F q y kT− −+ = ∆ + +      
)

        (22) 

where  ( ) ( ) ( )1 1 1
j jG q E q B q− − −=  and  gradGj = j-1 + gradB(q-1).  

The generalized predictive control low determination is based on the minimization of a mean 

square estimation, of type 
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where  yp[(k+j)Te] is the process control input, N1 is the minimum prediction horizon, N2 is the 

maximum prediction horizon, Nu is the control horizon and ( )ejTλ  is a sequence of control 

weighting factors. It can be observed that in this expression there are all the control future 

values that affect the outputs inserted in J. The first criterion term limits the error values and the 

second term limits the control values that avoid the saturation and result in low energy 

consumption for control action.  

Let be h[(k+j)Te] the output y[(k+j)Te] components that comprises all the known signals, thus 

 ( ) ( ) ( ) ( )
1 1 1

1
1 ,0e N N e N eh k N T G q g u kT F y kT− + = − ∆ +    
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            ……………………………………………………………………… 

Noting u u∆ = %, the previous equations can be written in matrix type  

 y Gu h= +
)

%                                             (24) 

Thus, the criterion becomes                  
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whence the control low results          

 ( )
1T T

refu G G I G y hλ
−

 = + − 
%                                         (26) 

with  

 G=

1

2 2

1 0

1 0

1

... 0 ... 0

... ... ... ... ... ...

... ... ... ... .

... ... ... ... ... ...

... ... ... ...

u

u

N

N

N N N

g g

g g

g g

−

−

− −

 
 
 
 
 
 
  
 

. 

Drive Control 

The induction drive function is simulated through the generalized predictive control. The 

control performances are analyzed depending on the results obtained by simulation. The 

generalized predictive control is applied at an induction drive with static torque with constant 

and in proportional to speed component. The motor has a nominal power of 0,25 kW is electric 

supplied at 220 V and has a nominal speed of 1500 rot/min. The motor is also characterized by 

the following data: Ls=0,116H, Lr=0,115H, Lm=0,113H, J=4.10
-3

kg.m
2
, K=2,5.10

-4
Nms, 

Rs=1,9 Ω , Rr=1,7 Ω  and the static torque is 1,6 Nm. For discretization of drive equivalent 

model, the transfer function is  

 H(s)=
( )( )

2/
( )

b a
H s

s s

αβ

αβ α β
=

+ +
,                                     (27) 

where α  and β  are the transfer function poles. Using the transformation function, from the 

continuous transfer function it is obtained the sampling transfer function in q-1  
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and the coefficients of the discrete transfer function depending on the continuous system poles  

α  and β  are 
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For Te =0,001s and the previous motor parameters, the discrete transfer function is obtained by 

multipling the bi (i=1,2) coefficients with the 2/b a

αβ
 factor, whence 

 ( )
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1 2

0,01039 0,0082

1 1,5215 0,53326

q q
H q

q q

− −
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+
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Depending on the input-output, this expression can be written 

( ) ( ) ( ) ( ) ( )1,5215 1 0,53326 2 0,01039 1 0,00842 2e e e q e q ekT k T k T U k T U k Tω ω ω= − − − + − + −               .  

 

 

 

 

 

 
 

Fig. 7. Control structural schema by generalized predictive control. 

Experimental Results 

To establish the control parameters some simulations are performed (it is studied the behavior of 

the isq stator current component, in accordance with q axis and the behavior of the ω  drive 

speed) for an unload start-up at a prescribed speed of approximate 150 rad.s-1 when the initial 

conditions are null (excepting the rdΨ  rotor flux, initialized at 0,3Wb), by fixing three of the 

control parameters and by changing the fourth one.  

For N2=8, Nu=1, λ =150 and N1 by changing from 2 to 8, increase the response time of the 

drive speed, being maximum when N1=8, and the isq current value decreases being less than 8A 

when N1=6 (Fig. 8). It is proceeded in analogous mode for N1=2, Nu=1, λ =150 and by 

changing N2 from 2 to 8, finally it is established that the time response of the drive speed 

increase, being maximum when N2=8, and the isq current value decreases being less than 8A 

when N2=6.   
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Fig. 8. The influence of  N1 minimum prediction horizon at unload start-up drive: 

a) on the speed; b) on the stator current. 

 

 

 

 

 

 

 
Fig. 9.  The influence of  the λ  weighting factor at unload start-up drive: 

a) on the speed; b) on the stator current. 

The drive moment of inertia can be changed until a 100% percent of nominal value, due 

to some load disturbances. The simulations show that by changing the moment of inertia 

between 50% and 100% over the nominal value, the speed building-up time increases a little, 

simultaneous with a little decrease of the stator current amplitude, the speed and the current 

curves having approximately the same shape with those illustrated in Fig. 10.  

 

Fig. 10. Drive speed shape (a) and current stator shape (b) at unload start-up drive, without simultaneous 

change of stator and rotor resistance (curve 1) and with simultaneous change of stator and rotor resistance 

with 50% opposite to their nominal values (curve 2). 

 

Fig. 11. On load start-up drive (with static torque with constant component and in proportional 

to speed, 1.6 Nm) and load change at  t=1s: a) speed shape; b) stator current shape 
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Conclusions 

These simulations show that the control performances are satisfying when the generalized 

predictive control is applied to an induction drive. The generalized predictive control also 

presents the modify advantage of control parameters depending on the desired performances. 

Because the control is based on a linear drive model, it is also necessary a drive control analysis 

with speed depending static torque, using non-linear drive model.  
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Comanda predictivă generalizată aplicată  

unei acţionări asincrone 

Rezumat 

Această lucrare studiază comanda predictivă generalizată, aplicată unei acţionări asincrone, cu control vectorial şi 
cuplu static cu componente constantă şi proporţională cu viteza. După definirea unui model simplificat al 
ansamblului format din acţionare şi controlul electronic vectorial, se prezintă caracteristicile generale ale comenzii 
predictive generalizate care se aplică comenzii vitezei acţionării considerate. În finalul lucrării este prezentată 
o analiză, prin simulare, a performanţelor. 
 
 
 
 

 


