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Abstract

This paper considers the problem of viscous dissipation in the flow of power-law fluid through a tube of
circular cross section, with Neumann boundary conditions. The solution of the problem is obtained by a
series expansion about the complete eigenfunctions system of a Sturm-Liouville problem. Eigenfunctions
and eigenvalues of this Sturm-Liouville problem are obtained by Galerkin’s method.
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Introduction

The problem of viscous dissipation in the fluid flow through a tube of circular cross section has
many practical applications. An example is oil product transport through ducts; another is the
polymer processing [1].

The problem has constituted the object of many researches. Various approximate methods have
been proposed for the determination of its solution. Recently, Valko [2] has obtained an
approximate solution by means of a combined method which uses the Laplace transform and
Galerkin method. Other approaches of the problem have been given in [3], [4], [5].

In [6] we have obtained an approximate solution of this problem in the case of Dirichlet
boundary conditions.

In this paper, we will consider the flow of power-law fluid through a tube of circular cross section
with Neumann boundary conditions (adiabatic wall). At the entrance of the tube the temperature

of the fluid is 7},. The flow is slow thus we can neglect the heat transfer by conduction in flow
direction. At the same time, we will consider that the fluid density p , specific heat C ,and the

heat transfer coefficient k are constant. The flow is related to a polar spatial coordinate system,
the Ox axis is along the tube axis, the radial coordinate will be considered to be 7, and R is the
radius of the tube. For the fluid velocity in the cross section we will consider the expression
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where v, is the mean fluid velocity, N = (v + 1)/ v, where v is a rheological constant of the

fluid. For Newtonian fluids v=1, for Bingham expanded fluid v<17, and for Bingham
pseudoplastic fluid v>1.

Given these conditions the energy equation is [7], [2]:
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where K is a rheological constant of the fluid.
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The aim of this paper is to establish an approximate solution of equation (2) which verifies
certain initial and boundary conditions.

The plan of the article is: in section two, we formulate the mathematical problem; section three
will contain the algorithm for the determination of eigenvalues and eigenfunctions (for the
Sturm-Liouville problem obtained by the method of separation of variables) with Galerkin’s
method [8]; in the last section, we will present the approximate solution of the problem and
some numerical results.

The Mathematical Problem

We associate to equation (2) the initial condition

x=0,T=T, 3)
and boundary conditions
r=0,2C —0. (x>0 @
or
y=R,a—T=0,(x>O). 5)
or

Condition (4) specifies that at the axis of the tube has a maximum point.

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in
dimensionless form. With the transformation group
T-T, r (v+Dk
o=—L.n=—,y= X ©)
T, R (3v+1)pC, Ry,

the equation (2) and the boundary conditions (3), (4), (5) become:
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In equation (7), the coefficient N, is the Brinkman number [1], [2].

It is easy to demonstrate that a particular solution of equation (7) which verifies the conditions
(9) and (10) is:

N 2
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15N [ v+n N+2T] (11)
The change of function
0=u+06, (12)
leads to the equation
(=¥ )2 _10(,90) (13)
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The unknown function u will satisfy the conditions (9) and (10), and the initial condition (8) is
replaced by:

y=0,u=-9,. (14)

The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of
separation of variables in order to determine the function u. By this method, the function u is
obtained under the form:

up =Y ¢, @, mexpl-22v), (1)

n=1

where @, and A, are the eigenvalues and the eigenfunctions of the Sturm-Liouville problem:
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The Application of Galerkin’s Method

For the determination of the eigenfunctions and eigenvalues of the Sturm-Liouville problem
(16), (17) we will apply the Galerkin’s method. For this, we consider the operators :

U:D(U)c L,[01] - L,[0.1],

D(U)={<I>e c2[0,1],%(0)=0,%(1)=0}, (18)

U(d)):%(n%}txz(l—n’v)@.

We look at the solution of Sturm-Liouville problem (16), (17) under the approximate form

q)(n)=zak(Pk (). (19)
k=1
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where ne N* is the approach level of function & and ((pk )keN* is a complete system of

functions in L, [0,1], functions which verifies the conditions [9]
d d "
Lk (0)=0,22% (1)=0, ke N*. (20)
dn dn
The unknown coefficients a,, k = I,_n are determined if giving the conditions

<U(®@).9;>=0, j=ln, 21

the scalar product being considered in the space of square integrable function L, [0,1].

By applying these conditions, we obtain the linear algebraic system in unknowna, , k = I,_n :

Z(% +k2Bkj)ak =0, j=Ln, (22)
k=1
where
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Because the system (22) must have nontrivial solutions, we obtain the equation
AnE‘A+sz‘:0, (25)

where A and B are the matrix A = (Ockj )k,j=L7’ B= (Bkj )k,j=1,7 .

The solutions of equations (25) represent the approximate values, for the n approach level, for
the eigenvalues A2, A2 LA ,kzn.

The solution of equation (1) is difficult to be obtained under this form. Consequently, through

elementary transformations of determinant A , this equation takes the form [10]:

n’

‘c-len =0, (26)

where 7, is the identity matrix of n order.

Unlike matrix A and B which are symmetric, matrix C does not have this property anymore.
Therefore we must adopt an adequate method for the determination of its eigenvalues [11].

In the followings, we will use the complete system of functions (¢ k ), in L, [0,1]:

keN
¢r(M)=Jo(um). (27)

where J o is the Bessel function of the first kind and zero order and p,,ke N *are the roots of

the equation:

The integrals which appear in the formulas (23), (24) are calculated with a quadrature formula
that must be compatible with Galerkin’s method [12]. The eigenvalues of the Sturm-Liouville
problem obtained by this method are presented in the next section.
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The eigenfunctions of the problem (18), (19) have the analytical form

n)=Zn:c,-on(um), i=1’_" (29)
j=1

where (c;,¢ip,A ,c;y, )i =1,n are the eigenvectors of the matrix A +2?B

The Approximate Solution of the Problem

The unknown function u, for the n level of approximation of Galerkin’s method, is obtained
from (15) and (27):

Z{Z cicipe & ]Jo (). (30)

k=1

The coefficients ¢, ,i= I,_n from (30) are determined by the use of the condition (14) and by
considering that the solutions ®,;,i = I,_n of the problem (16), (17) are orthogonal with weight

n(]—nN ) on [0,1] [9]. Because the functions ®,,i = 1,n are not obtained exactly, we prefer to
use the orthogonality with weight 77 of Bessel functions on [0,1] .

Thus, for the n level of approximation, the constants c; ,i :L_n are determined by the
resolution of the linear algebraic system:
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The final solution of the problem is obtained now by using the relations (12), (15) and (30):

Np 2
oy.m)=— (4w - n ) Z{Zche ’ JJO (wem) (32)

As an example, we will consider a fluid with unit Brinkman number. The eigenvalues of the
Sturm-Liouville problem (16), (17) are presented in table 1. The coefficients given by (23) and
(24) are obtained by a numerical quadrature procedure [11]. The eigenvalues have been
obtained by using the procedures BALANC, ELMHES, HQR [11]. The system (31) has been
solved using a procedure based on Gauss method [11].

The variation of dimensionless temperature 6 given by (32) is presented in figures 1-4. In
abscissa axis there is the reduced radial distance m and in ordinates axis there is the
dimensionless temperature 0. The variation of dimensionless temperature 0 is presented for
some values of dimensionless variable .

Given the results obtained, we can deduce that for a certain value of the rheological coefficient
n, the temperature of the fluid is increased along the tube. For a given value of the
dimensionless variable y , the temperature of the fluid is increased together with n.

The calculations have been realised for the approximation level n=10 and the algorithm
presents considerable stability.
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Table 1. Eigenvalues of Sturm-Liouville problem
n
0,35 0,5 0,6 0,7 0,75 0,8 0,9 1,0 1,1 1,2
2
ﬂll
0 0 0 0 0 0 0 0 0 0
20.942 22.427 23.247 23.966 24.293 24.602 25.169 25.679 26.141 26.560
68.283 73.102 75.800 78.175 79.260 80.283 82.168 83.863 85.395 86.788
141.810 | 151.783 | 157.384 | 162.323 | 164.581 166.712 | 170.637 | 174.170 | 177.366 | 180.271
241.465 | 258.414 | 267.946 | 276.356 | 280.201 | 283.832 | 290.522 | 296.544 | 301.993 | 306.947
367.227 | 392.974 | 407.462 | 420.251 | 426.098 | 431.622 | 441.799 | 450.961 | 459.253 | 466.792
519.085 | 555.452 | 575.924 | 593.997 | 602.262 | 610.070 | 624.458 | 637.411 | 649.135 | 659.795
697.032 | 745.840 | 773.322 | 797.588 | 808.685 | 819.170 | 838.490 | 855.885 | 871.630 | 885.948
901.064 | 964.136 | 999.656 | 1031.02 | 1045.36 | 1058.91 | 1083.89 | 1106.38 | 1126.73 | 1145.24
1131.17 | 121033 | 1254.91 1294.29 | 1312.29 | 1329.31 | 1360.66 | 1388.89 | 1414.45 | 1437.69
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Fig. 1. Dimensionless temperature profiles
for adiabatic walls, n=0,35, Ng,=1

Fig. 2. Dimensionless temperature profiles
for adiabatic walls, n=0,5, Nz=1
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Fig. 4. Dimensionless temperature profiles
for adiabatic walls, n=1,0, Nz=1

Fig. 3. Dimensionless temperature profiles
for adiabatic walls, n=0,75, Nz,=1

As compared to Valko [2], the paper presents the advantage of a simpler algorithm which can
also be adapted to other boundary conditions (Dirichlet and Robin type conditions) by an
appropriate changing of the condition (17) and of the equation (28).
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Asupra disipatiei vascoase in miscarea fluidelor de tip putere
printr-un tub de sectiune circulara

Rezumat

In acest articol este studiatd problema disipatiei vdscoase in miscarea fluidelor de tip putere printr-un
tub de sectiune circulard, cu conditii la limitd de tip Neumann. Solutia problemei este obtinuta sub forma
unei serii dupd sistemul complet de functii proprii al unei probleme de tip Sturm-Liouville. Valorile
proprii si functiile proprii ale acestei probleme Sturm-Liouville sunt obfinute cu metoda lui Galerkin.



