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Abstract 
 
This paper considers the problem of viscous dissipation in the flow of power-law fluid through a tube of 
circular cross section, with Neumann boundary conditions. The solution of the problem is obtained by a 
series expansion about the complete eigenfunctions system of a Sturm-Liouville problem. Eigenfunctions 
and eigenvalues of this Sturm-Liouville problem are obtained by Galerkin’s method. 
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Introduction 
 

The problem of viscous dissipation in the fluid flow through a tube of circular cross section has 

many practical applications. An example is oil product transport through ducts; another is the 

polymer processing [1]. 

The problem has constituted the object of many researches. Various approximate methods have 

been proposed for the determination of its solution. Recently, Valko [2] has obtained an 

approximate solution by means of a combined method which uses the Laplace transform and 

Galerkin method. Other approaches of the problem have been given in [3], [4], [5]. 

In [6] we have obtained an approximate solution of this problem in the case of Dirichlet 

boundary conditions. 

In this paper, we will consider the flow of power-law fluid through a tube of circular cross section 

with Neumann boundary conditions (adiabatic wall). At the entrance of the tube the temperature 

of the fluid is 0T . The flow is slow thus we can neglect the heat transfer by conduction in flow 

direction. At the same time, we will consider that the fluid density ρ , specific heat pC and the 

heat transfer coefficient k  are constant. The flow is related to a polar spatial coordinate system, 

the Ox  axis is along the tube axis, the radial coordinate will be considered to be r, and R is the 

radius of the tube. For the fluid velocity in the cross section we will consider the expression 
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where mv  is the mean fluid velocity, ( ) ν+ν= /1N , where ν  is a rheological constant of the 

fluid. For Newtonian fluids 1=ν , for Bingham expanded fluid 1<ν , and for Bingham 

pseudoplastic fluid 1>ν . 

Given these conditions the energy equation is [7], [2]: 
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where K is a rheological constant of the fluid. 

The aim of this paper is to establish an approximate solution of equation (2) which verifies 

certain initial and boundary conditions. 

The plan of the article is: in section two, we formulate the mathematical problem; section three 

will contain the algorithm for the determination of eigenvalues and eigenfunctions (for the 

Sturm-Liouville problem obtained by the method of separation of variables) with Galerkin’s 

method [8]; in the last section, we will present the approximate solution of the problem and 

some numerical results. 
 

 

The Mathematical Problem 
 

We associate to equation (2) the initial condition 

 0,0 TTx ==  (3) 

and boundary conditions 
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Condition (4) specifies that at the axis of the tube has a maximum point. 

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in 

dimensionless form. With the transformation group 
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the equation (2) and the boundary conditions (3), (4), (5) become: 
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 0,0 =θ=ψ , (8) 
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In equation (7), the coefficient BrN  is the Brinkman number [1], [2]. 

It is easy to demonstrate that a particular solution of equation (7) which verifies the conditions 

(9) and (10) is: 
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The change of function 

 1θ+=θ u  (12) 

leads to the equation 
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The unknown function u will satisfy the conditions (9) and (10), and the initial condition (8) is 

replaced by: 

 1,0 θ−==ψ u . (14) 

The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of 

separation of variables in order to determine the function u. By this method, the function u is 

obtained under the form: 
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∞
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where nΦ  and nλ  are the eigenvalues and the eigenfunctions of the Sturm-Liouville problem: 
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The Application of Galerkin’s Method 
 

For the determination of the eigenfunctions and eigenvalues of the Sturm-Liouville problem 

(16), (17) we will apply the Galerkin’s method. For this, we consider the operators : 

( ) [ ] [ ]1,01,0: 22 LLUDU →⊂ , 
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We look at the solution of Sturm-Liouville problem (16), (17) under the approximate form 
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where ∗∈ Nn  is the approach level of function Φ  and ( ) ∗∈ϕ
Nkk  is a complete system of 

functions in [ ]1,02L , functions which verifies the conditions [9] 
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The unknown coefficients nkak ,1, =  are determined if giving the conditions 

 ( ) 0, =>ϕΦ< jU , nj ,1= , (21) 

the scalar product being considered in the space of square integrable function [ ]1,02L . 

By applying these conditions, we obtain the linear algebraic system in unknown ka , nk ,1= : 
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Because the system (22) must have nontrivial solutions, we obtain the equation 

 0
2 =λ+≡∆ BAn , (25) 

where A and B are the matrix ( )
njkkjA

,1, =
α= , ( )

njkkjB
,1, =

β= . 

The solutions of equations (25) represent the approximate values, for the n approach level, for 

the eigenvalues 2
1λ , 22

2 ,, nλλ Λ . 

The solution of equation (1) is difficult to be obtained under this form. Consequently, through 

elementary transformations of determinant n∆ , this equation takes the form [10]: 

 02 =λ− nIC , (26) 

where nI  is the identity matrix of n order. 

Unlike matrix A and B which are symmetric, matrix C does not have this property anymore. 

Therefore we must adopt an adequate method for the determination of its eigenvalues [11]. 

In the followings, we will use the complete system of functions ( ) ∗∈ϕ
Nkk  in [ ]1,02L :  

 ( ) ( )ηµ=ηϕ kk J 0 , (27) 

where 
0J  is the Bessel function of the first kind and zero order and ∗∈µ Nk,k are the roots of 

the equation: 

 ( ) 01 =µJ . (28) 

The integrals which appear in the formulas (23), (24) are calculated with a quadrature formula 

that must be compatible with Galerkin’s method [12]. The eigenvalues of the Sturm-Liouville 

problem obtained by this method are presented in the next section. 
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The eigenfunctions of the problem (18), (19) have the analytical form 
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where ( ) niccc inii ,1,,,, 21 =Λ  are the eigenvectors of the matrix BA 2λ+ . 

 

 

The Approximate Solution of the Problem 
 

The unknown function u, for the n level of approximation of Galerkin’s method, is obtained 

from (15) and (27): 
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The coefficients nici ,1, =  from (30) are determined by the use of the condition (14) and by 

considering that the solutions nii ,1, =Φ  of the problem (16), (17) are orthogonal with weight 

( )N1 η−η  on [ ]1,0  [9]. Because the functions nii ,1, =Φ  are not obtained exactly, we prefer to 

use the orthogonality with weight η  of Bessel functions on [ ]1,0 . 

Thus, for the n level of approximation, the constants nici ,1, =  are determined by the 

resolution of the linear algebraic system: 
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The final solution of the problem is obtained now by using the relations (12), (15) and (30): 
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As an example, we will consider a fluid with unit Brinkman number. The eigenvalues of the 

Sturm-Liouville problem (16), (17) are presented in table 1. The coefficients given by (23) and 

(24) are obtained by a numerical quadrature procedure [11]. The eigenvalues have been 

obtained by using the procedures BALANC, ELMHES, HQR [11]. The system (31) has been 

solved using a procedure based on Gauss method [11]. 

The variation of dimensionless temperature θ  given by (32) is presented in figures 1-4. In 

abscissa axis there is the reduced radial distance η  and in ordinates axis there is the 

dimensionless temperature θ . The variation of dimensionless temperature θ  is presented for 

some values of dimensionless variable ψ . 

Given the results obtained, we can deduce that for a certain value of the rheological coefficient 

n, the temperature of the fluid is increased along the tube. For a given value of the 

dimensionless variable ψ , the temperature of the fluid is increased together with n. 

The calculations have been realised for the approximation level 10=n  and the algorithm 

presents considerable stability. 
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Table 1. Eigenvalues of Sturm-Liouville problem 

n 

0,35 0,5 0,6 0,7 0,75 0,8 0,9 1,0 1,1 1,2 

2

nλ  

0 0 0 0 0 0 0 0 0 0 

20.942 22.427 23.247 23.966 24.293 24.602 25.169 25.679 26.141 26.560 

68.283 73.102 75.800 78.175 79.260 80.283 82.168 83.863 85.395 86.788 

141.810 151.783 157.384 162.323 164.581 166.712 170.637 174.170 177.366 180.271 

241.465 258.414 267.946 276.356 280.201 283.832 290.522 296.544 301.993 306.947 

367.227 392.974 407.462 420.251 426.098 431.622 441.799 450.961 459.253 466.792 

519.085 555.452 575.924 593.997 602.262 610.070 624.458 637.411 649.135 659.795 

697.032 745.840 773.322 797.588 808.685 819.170 838.490 855.885 871.630 885.948 

901.064 964.136 999.656 1031.02 1045.36 1058.91 1083.89 1106.38 1126.73 1145.24 

1131.17 1210.33 1254.91 1294.29 1312.29 1329.31 1360.66 1388.89 1414.45 1437.69 

          

 

 

 

 

Fig. 1. Dimensionless temperature profiles 

for adiabatic walls, n=0,35, NBr=1 

Fig. 2. Dimensionless temperature profiles 

for adiabatic walls, n=0,5, NBr=1 
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Fig. 3. Dimensionless temperature profiles 

for adiabatic walls, n=0,75, NBr=1 

Fig. 4. Dimensionless temperature profiles 

for adiabatic walls, n=1,0, NBr=1 

 

As compared to Valko [2], the paper presents the advantage of a simpler algorithm which can 

also be adapted to other boundary conditions (Dirichlet and Robin type conditions) by an 

appropriate changing of the condition (17) and of the equation (28). 
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Asupra disipaţiei vâscoase în mişcarea fluidelor de tip putere 

printr-un tub de secţiune circulară 
 

 

Rezumat 
 
În acest articol este studiată problema disipaţiei vâscoase în mişcarea fluidelor de tip putere printr-un 
tub de secţiune circulară, cu condiţii la limită de tip Neumann. Soluţia problemei este obţinută sub forma 
unei serii după sistemul complet de funcţii proprii al unei probleme de tip Sturm-Liouville. Valorile 
proprii şi funcţiile proprii ale acestei probleme Sturm-Liouville sunt obţinute cu metoda lui Galerkin. 


