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Abstract

In the paper is presented a methodology that allows a dynamical analysis of a continuous beam with
some supplimentary concentrated mass for a real case of a drilling equipment.

Based on the theory of vibrations of continuous beams in the paper is developed a numerical algorithm
that allows the calculation of the proper frequencies for such a structure. There are analysed some
different positions of the concentrated mass and the influence of this positions in the proper frequencies is
obtained.
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General Equations

It is considered a vertical continuous beam with the length /, the aria of the cross section 4,

density p and specific mass m (fig. 1a).
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Fig. 1. Loads and geometry of continuous beam with concentrated mass
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In the hypothesis that the cross sectional aria is constant along the length of the beam, the
differential equation of the axial vibrations of the beam is [1] :
o’'u —o’u
EA—— —m—=-f(x,1) (1)
o’ ot’

where FEA is the axial rigidity of the beam, u(x,?) is the displacement in the current section of
the beam and f{x,?) is the external force that acts along the beam. If the external forces are absent
the above equality becomes :

o’u —0o’u
EFEA—-m—=0 2)
o’ o’
Using the Fourier method the u(x,#) function can be written under the form :
u(x,t)=u_(x)-T() 3)
and from (2) the following differential equation is obtained :
d’u
+a” -u, =0 4)
dx’

where the a parameter is defined by the relation :
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The solution of the (4) differential equation is put under the form :
u, =C, sinax+C, cosax (6)

The (4) differential equation has to verify the following limit conditions :

x=0=>u, =y, a)
du
x=l=N_ =FEA—=N, b) @)
dx
Taking into consideration the (7) limit conditions, the expressions for u, and N, become :
N, .
U, =u,cosax+ sin ax a)
} EAa
N, =—-FAa-u, -sinax+ N,cosax b) (8)
The (8) relations suggest a matriceal form like :
|
u, cos ax sinax | | ¥
][ e gl
x — EAasin ax cos ax !
or a concentrated form as :
[s.]=[D,]-[5] 9)

The matrixes from (9°) are obtained by a direct identification between (9) and (9°) equalities.
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The (9°) relation allows the written of a matriceal expression between the dynamical parameters
from the ends of the beam presented in figure la :

[5.]=[D,]-[s,] (10)

When the beam contains supplementary concentrated mass (fig.1b) the passing over such a mass
can be expressed by the relation :

[si7]= {_ . ﬂ-[SF’gF D, ] [s:*] (an

mp

If all the concentrated mass are taken into consideration and the fact that the lengths between to
consecutive mass are identically, the (10) and (11) relations can be written successively :

s ]=[D.])[s.]
[Sldr]z[Dl]'[S1Stg]=[D_l]'[Dl]'[So]
[Sgtg]:[Dz]'[Sldr]:[Dz]' Dl]'[Dl]'[So]

|
[si7]=[p, ) [s3#]=[p, | [D.)-[D, | [P, ][5, ] (12)

[s2]= [D] 0,10, }[D,.1- D} [D.]-[s,]
s,.1=[p,.)-[s¢]=[p,.)-[p,} Ip,)- [, [, ]+ [D, } (D, ) [

The dynamical matrixes that appear in (12) have the following forms :

|
[Dl ] = [Dn+1 ] = cos alo EACI st ala = [Ml ] a)
—FEAasinal cosal,
1 .
[D,]=[D,]=..=[D,]=| oAl g smed b) (13)
— EAasin aAl cosaAl

S Y e I B I S 8 0

Taking into consideration (13) the products between the matrixes [D_n] [Dn] become :

1
—— 1 0 cosal sinal
Dl]'[Dl]{ ) 1] Coo Rag =
—mp — EAasinal, cosal,

sinal,,

. 2 Fda ma . :[M3]
—EAdasinal, —mp~ cosal, cosal, ——Asm al,
L.

cosal,
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D, |[p.]=..=|p,}[p, =

cosaAl sin aAl
b) (14)
. 5 Fda ma . - [M“]
— EAasinaAl —mp~ cosaAl cosaAl — I sin aAl
yo

Taking into consideration the (13) and (14) relations, the last equality from (12) can be written
under the general form :

(S, ]= 1 ][ 7 [ ][, [= (M ][, ] (15)

Because all the matrixes from (15) have two lines and two columns, the above relation can be
put under the concentrated form :

d d
[Snﬂ]:|:un+1:|:{ 1 12]{”0} (16)
Nn+1 d21 d22 No

For a beam embedded at the superior end and free at the inferior one (fig.1b), the limit
conditions are #, =0 and N,,, = 0. From (16) the following equation is obtained :

dy, =0 (17)

If the beam is embedded at the superior end and axially supported at the inferior one, the limit

conditions are #, =0 and u,,, = 0. From (16) the following equation is obtained :

n+l

d,=0 (18)

Calculus Example

It is considered a beam with / = 1000 m made from steel with p = 7850 kg/m’. The continuous
beam contains also # = 10 concentrated mass with m = 100 kg, placed at a variable distance /,.
The dynamical analysis of the free vibrations of the beam has been made in two hypothesis :
when the beem is embedded at the superior end and free at the inferior one(equation (17) is
valid) and when the beam is embedded at the superior and axially simply supported at the
inferior one (equation (18) is valid). Using (17) and (18) equations the first free proper
frequencies have been calculated for different values for /, distance in the interval (20 m..450
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For the first case (embedded at the superior end and free at the inferior one) the variations of the
first free proper frequencies are presented in the figure 2.

For the second case (embedded at the superior end and axially simply supported at the other one
the first free frequencies are presented in the figure 3.
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Fig. 3

In order to solve numerically the (17) and (18) equations algorithm and calculus programmes
have been developed. The first three roots of the above mentioned equations are the first three
proper frequencies of the structure. Analysing the results presented in figure 2 it can be noticed
that :
- the first proper frequency (the fundamental one) is nearly constant and does not
depend of the positions of the concentrated mass;
- the second proper frequency has a very small variation (nearly 3%);
- the third proper frequency has also a small variation, but higher that the second
one (nearly 6%).
When the beam is embedded at the superior and axially simply supported at the inferior one, the
results are presented in figure 3. Analysing these results it can be noticed that :
- all the proper frequencies have higher variation than those presented in the above
case;
- the first proper frequency has a variation of 16%;
- the second frequency has a variation of 21%;
- the third frequency has a variation of 7%.
From the diagrams presented in figures 2 and 3 it can be noticed that the position of the
concentrated mass has an important influence of the proper circular frequencies, reaching the
absolute variation of 21%.
The exact calculation of the proper circular frequencies is important because the position of the
concentrated mass may be a technological method of avoiding the dangerous dynamical
phenomena.
For example, it can be establish a distance between the concentrated mass in order to obtain the
values of the proper circular frequencies far away from the external frequencies of the
perturbations.
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Conclusions

In the paper are presented a methodology of determination of the axial proper circular
frequencies for a continuous beam loaded with some concentrated mass. The results obtained
allow to obtain the influence of the distance between the concentrated mass in the values of the
proper frequencies. The algorithm has been analysed in a calculus example.

The above methodology can be used also for some other types of limit conditions.
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Vibratii axiale ale barelor cu masa continud
incarcate cu mase concentrate

Rezumat

In lucrare se prezintd o metodologie de determinare a pulsatiilor proprii axiale ale barelor cu masa
continud, Incarcate cu mase concentrate suplimentare. Metodologia de calcul este bazata pe teoria
vibratiilor barelor cu masa continua §i este dezvoltat un program de calcul, care furnizeaza frecventele
proprii ale structurii. Rezultatele obtinute sunt abnalizate pe un exemplu de calcul, in doua conditii de
rezemare. Este evidentiata influenta pe care distanta dintre mase o induce in valorile pulsatiilor proprii
si este sugeratd ideea cd, aceasta pozitionare a maselor se poate constitui intr-o metoda eficientd prin
care pot fi evitate fenomenele dinamice periculoase.



