
BULETINUL 
Universităţii Petrol – Gaze din Ploieşti 

Vol. LIX 
No. 3/2007 35 - 40 Seria Tehnică 

 

 

Axial Vibrations of Continuous Beams                         
with Concentrated Mass  

Şerban Vasilescu   
 
 
Universitatea Petrol-Gaze din Ploieşti,  Bd. Bucureşti 39, Ploieşti 
    e-mail: vserban @mail.upg-ploiesti.ro  
 
 
Abstract 
 
In the paper is presented a methodology that allows a dynamical analysis of a continuous beam with 
some supplimentary concentrated mass for a real case of a drilling equipment. 
Based on the theory of vibrations of continuous beams in the paper is developed a numerical algorithm 
that allows the calculation of the proper frequencies for such a structure. There are analysed some 
different positions of the concentrated mass and the influence of this positions in the proper frequencies is 
obtained. 
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General Equations 
 
It is considered a vertical continuous beam with the length l, the aria of the cross section A, 
density ρ and specific mass m  (fig. 1a).  
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Fig. 1. Loads and geometry of continuous beam with concentrated mass 
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In the hypothesis that the cross sectional aria is constant along the length of the beam, the 
differential equation of the axial vibrations of the beam is [1] : 
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where  EA is the axial rigidity of the beam, u(x,t) is the displacement in the current section of 
the beam and f(x,t) is the external force that acts along the beam. If the external forces are absent 
the above equality becomes : 
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Using the Fourier method the u(x,t) function can be written under the form : 

                                                  )()(),( tTxutxu x ⋅=                                                                (3) 

and from (2) the following differential equation is obtained : 
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where the a parameter is defined by the relation : 

                                                2
2

2 p
EEA

pma ρ
=

⋅
=                                                                 (5) 

The solution of the (4) differential equation is put under the form : 

                                           axCaxCux cossin 21 +=                                                            (6) 

The (4) differential equation has to verify the following limit conditions : 
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Taking into consideration the (7) limit conditions, the expressions for ux and Nx become : 
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The (8) relations suggest a matriceal form like : 
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or a concentrated form as : 

                                              [ ] [ ] [ ]1SDS xx ⋅=                                                                          (9’) 

The matrixes from (9’) are obtained by a direct identification between (9) and (9’) equalities. 
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The (9’) relation allows the written of a matriceal expression between the dynamical parameters 
from the ends of the beam presented in figure 1a : 

                                                     [ ] [ ] [ ]112 SDS ⋅=                                                                   (10) 

When the beam contains supplementary concentrated mass (fig.1b) the passing over such a mass 
can be expressed by the relation : 
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If all the concentrated mass are taken into consideration and the fact that the lengths between to 
consecutive mass are identically, the (10) and (11) relations can be written successively : 

           [ ] [ ] [ ]o
stg SDS ⋅= 11  

           [ ] [ ] [ ] [ ] [ ] [ ]o
stgdr SDDSDS ⋅⋅=⋅= 11111  

           [ ] [ ] [ ] [ ] [ ] [ ] [ ]o
drstg SDDDSDS ⋅⋅⋅=⋅= 112122  

           [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]o
stgdr SDDDDSDS ⋅⋅⋅⋅=⋅= 1122222                                                         (12) 

           …………………………………………………….. 

           [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]onnnn
dr
n SDDDDDDS ⋅⋅⋅⋅⋅⋅⋅⋅= −− 1111  

           [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]onnnnn
dr
nnn SDDDDDDDSDS ⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅= −−+++ 1111111  

The dynamical matrixes that appear in (12) have the following forms : 
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Taking into consideration (13) the products between the matrixes [ ] [ ]nn DD ⋅  become : 
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Taking into consideration the (13) and (14) relations, the last equality from (12) can be written 
under the general form : 
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Because all the matrixes from (15) have two lines and two columns, the above relation can be 
put under the concentrated form : 
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For a beam embedded at the superior end and free at the inferior one (fig.1b), the limit 
conditions are 0=ou  and 01 =+nN . From (16) the following equation is obtained : 

                                                 022 =d                                                                                      (17) 

If the beam is embedded at the superior end and axially supported at the inferior one, the limit 
conditions are 0=ou  and 01 =+nu . From (16) the following equation is obtained : 

                                                 012 =d                                                                                      (18) 

  

Calculus Example 
 
It is considered a beam with l = 1000 m made from steel with ρ = 7850 kg/m3.  The continuous 
beam contains also n = 10 concentrated mass with m = 100 kg, placed at a variable distance lo. 
The dynamical analysis of the free vibrations of the beam has been made in two hypothesis : 
when the beem is embedded at the superior end and free at the inferior one(equation (17) is 
valid) and when the beam is embedded at the superior and axially simply supported at the 
inferior one (equation (18) is valid). Using (17) and (18) equations the first free proper 
frequencies have been calculated for different values for lo distance in the interval (20 m..450 
m). 
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For the first case (embedded at the superior end and free at the inferior one) the variations of the 
first free proper frequencies are presented in the figure 2. 

For the second case (embedded at the superior end and axially simply supported at the other one 
the first free frequencies are presented in the figure 3. 

 

 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
 
In order to solve numerically the (17) and (18) equations algorithm and calculus programmes 
have been developed. The first three roots of the above mentioned equations are the first three 
proper frequencies of the structure. Analysing the results presented in figure 2 it can be noticed 
that : 

- the first proper frequency (the fundamental one) is nearly constant and does not 
depend of the positions of the concentrated mass; 

- the second proper frequency has a very small variation (nearly 3%); 
- the third proper frequency has also a small variation, but higher that the second 

one (nearly 6%). 
When the beam is embedded at the superior and axially simply supported at the inferior one, the 
results are presented in figure 3. Analysing these results it can be noticed that : 

- all the proper frequencies have higher variation than those presented in the above 
case; 

- the first proper frequency has a variation of 16%; 
- the second frequency has a variation of 21%; 
- the third frequency has a variation of 7%. 

From the diagrams presented in figures 2 and 3 it can be noticed that the position of the 
concentrated mass has an important influence of the proper circular frequencies, reaching the 
absolute variation of 21%. 
The exact calculation of the proper circular frequencies is important because the position of the 
concentrated mass may be a technological method of avoiding the dangerous dynamical 
phenomena. 
For example, it can be establish a distance between the concentrated mass in order to obtain the 
values of the proper circular frequencies far away from the external  frequencies of the 
perturbations.  
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Conclusions 
 
In the paper are presented a methodology of determination of the axial proper circular 
frequencies for a continuous beam loaded with some concentrated mass. The results obtained 
allow to obtain the influence of the distance between the concentrated mass in the values of the 
proper frequencies. The algorithm has been analysed in a calculus example. 
The above methodology can be used also for some other types of  limit conditions. 
 
 
References 
 
1. P o s e a  N ., Dinamica Stucturilor , Editura Didactică şi Pedagogică, Bucureşti, 1979. 
2. P o s e a  N . ,  V a s i l e s c u  Ş . , General Solution of Symmetrically Loaded Thin Cylindrical 

Shells, Applying the Laplace Transform, Revue Roumaine des Sciences Techniques, Serie de 
Mecanique Appliquee, nr. 2 (32), Edit. Academiei, Bucureşti, 1987. 

3. V a s i l e s c u   Ş . ,  T a l l e  V . ,  B a d o i u   D ., Rezistenţa materialelor- tehnici de calcul şi 
proiectare, Editura U.P.G., Ploieşti 2002. 

 

Vibraţii axiale ale barelor cu masa continuă 
         încărcate cu mase concentrate  

Rezumat 

În lucrare se prezintă o metodologie de determinare a pulsaţiilor proprii axiale ale barelor cu masa 
continuă, încărcate cu mase concentrate suplimentare. Metodologia de calcul este bazată pe teoria 
vibraţiilor barelor cu masa continuă şi este dezvoltat un program de calcul, care furnizează frecvenţele 
proprii ale structurii. Rezultatele obţinute sunt abnalizate pe un exemplu de calcul, în două condiţii de 
rezemare. Este evidenţiată înfluenţa pe care distanţa dintre mase o induce în valorile pulsaţiilor proprii 
şi este sugerată ideea că, această poziţionare a maselor se poate constitui într-o metoda eficientă prin 
care pot fi evitate fenomenele dinamice periculoase. 
 
 
 
 
 
 


