The calculation of the parameters of the crimped ribbon for Flame Arresters

Niculae Napoleon Antonescu, Tudor Ichim
Universitatea Petrol - Gaze din Ploieşti. Bd.Bucureşti 39, Ploieşti, Romania
e-mail nnantonescu@upg-ploiesti.ro

Abstract

The work puts forward solutions to establish the parameters of the reference rack which generates the gears which crimped ribbon. Presenting the calculation formula for the parameters of the trap grid offers the possibility to establish some functional characteristics for the grid of flame arrester such as: the equivalent hydraulic diameter, the length of the ribbons which make up the grid, the weight of the grid, the obstructing ratio of theflame arrester, the number of channels per area unit.

Key words: flame arrester, hydraulic diameter, critical diameter, the length of the crimped metal ribbon

General considerations

In order to execute quenching channels, there are used devices which crimped metal tapes (stamping) of aluminium or stainless steel, thus obtaining an involute profile (resembling the gear teeth). The diameter of the channels (ports) which are technologically achieved in production, by means of corrugating the metal tape, is not a circular diameter. The quenching channels, obtained as a result of winding the crimped metal ribbon together with a bar tape, have their section similar to that of an isosceles or equilateral triangle. In order to characterize these channels, there was introduced the notion of equivalent hydraulic diameter $d_{\text {ech }}$.

In order to obtain the flame trapping function, the area of these channels must have a certain value for the parameter called equivalent hydraulic diameter $d_{e c h}$. This value, established out of purely technological reasons, must be less than or equal to the critical quenching diameter $d_{c r t}$.

The value of the critical diameter is influenced by the chemical properties of the substance that is burning, being a function of the flame propagation, of thermal diffusivity of the substance that is burning, and is calculated with the relation:

$$
\begin{equation*}
d_{c r t} \leq \frac{32.5 \cdot R \cdot T_{c} \cdot \lambda_{c}}{w_{f} \cdot c_{p c} \cdot p_{c} \cdot M_{c}}=\frac{270.216 \cdot T_{c} \cdot \lambda_{c}}{w_{f} \cdot c_{p c} \cdot p_{c} \cdot M_{c}}[m] \tag{1}
\end{equation*}
$$

where: Re - Reynolds' criterion;
Pr - Prandtl' s criterion;
$w_{f}-$ the normal speed of the flame $\left[\frac{m}{s}\right]$;
$d_{c r t}$ - the calculation diameter of the channels of flame arrester elements (grids) $[m]$;
$c_{p c}$ - the mass caloric power at constant pressure of the given fuel mixture $\left[\frac{N}{m^{2}}\right]$;
T_{c} - the initial temperature of the inflammable mixture $\left[{ }^{\circ} K\right]$;
$\lambda_{c}-$ thermal conductivity of the inflammable mixture $\left[\frac{W}{m \cdot^{\circ} K}\right]$;
$R \quad$ - gas constant per mole $\left(R=8314.34 \frac{j}{m o l} \cdot{ }^{\circ} \mathrm{K}\right)$;
M_{c} - gram-molecular weight of the gas inflammable mixture $\left[\frac{K g}{m o l}\right]$.
For non-circular flow channels or cross sections, the equivalent hydraulic diameter is established with the relation:

$$
\begin{equation*}
d_{e c h}=\frac{4 S}{P}[m] \tag{2}
\end{equation*}
$$

where: $\mathrm{S}-$ is the flow cross section, $\left[\mathrm{m}^{2}\right]$;
P - the perimeter wetted by the fluid, [m].
In order to calculate the equivalent hydraulic diameter $d_{e c h}$, it is necessary to establish the relations to determine the values of the perimeter wetted by the fluid and for the flow cross section.

Fig 1. Geometric elements of the reference rack

The calculation of the perimeter wetted by the fluid

In order to establish the calculation relation of the wetted perimeter, we shall use the notations from Fig.1, where it is represented the geometry of the reference rack.
The dimensions characteristic to the reference profile are:

- the angle of the reference profile α_{0};
- the reference pitch p_{0};
- the height of the reference head a_{0};
- the height of the reference foot b_{0};
- the bottom reference backlash c_{0};
- the height of the reference tooth $\quad h_{0}$;
- junction radius r_{0}.

Out of the notations in the figure, we obtain:

- out of $\triangle \mathrm{ABC}$ there results :

$$
\begin{equation*}
\cos \left(\alpha_{o}\right)=\frac{\overline{A B}}{\overline{A C}} \Rightarrow \overline{A C}=\frac{\overline{A B}}{\cos \left(\alpha_{o}\right)} \tag{3}
\end{equation*}
$$

- out of \triangle ADE there results:

$$
\begin{equation*}
\cos \left(\alpha_{o}\right)=\frac{\overline{A D}}{\overline{A E}} \Rightarrow \overline{A E}=\frac{\overline{A D}}{\cos \left(\alpha_{o}\right)} \tag{4}
\end{equation*}
$$

where:

$$
\begin{align*}
& \overline{A D}=a_{o}+c_{o}=\left(f_{o}+w_{o}\right) \cdot m \tag{5}\\
& \overline{A B}=a_{o}=f_{o} \cdot m \tag{6}
\end{align*}
$$

Introducing (6) in (3) there results:

$$
\begin{equation*}
\overline{A C}=\frac{f_{o}}{\cos \alpha_{o}} \cdot m \tag{7}
\end{equation*}
$$

Introducing (4) in (3) there results:

$$
\begin{equation*}
\overline{A E}=\frac{f_{o}+w_{o}}{\cos \alpha_{o}} \cdot m \tag{8}
\end{equation*}
$$

Adding (7) to (8) we obtain:

$$
\begin{equation*}
\overline{E C}=\overline{A E}+\overline{A C}=\frac{f_{o}+w_{o}}{\cos \alpha_{o}} \cdot m+\frac{f_{o}}{\cos \alpha_{o}} \cdot m=\frac{2 \cdot f_{o}+w_{o}}{\cos \alpha_{o}} \cdot m \tag{9}
\end{equation*}
$$

Out of $\triangle \mathrm{ABC}$ there results:

$$
\begin{equation*}
\operatorname{tg} \alpha_{o}=\frac{\overline{B C}}{\overline{A B}} \Rightarrow \overline{B C}=\overline{A B} \cdot \operatorname{tg} \alpha_{o}=a_{o} \cdot \operatorname{tg} \alpha_{o}=f_{o} \cdot m \cdot \operatorname{tg} \alpha_{o} \tag{10}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { because: } & \overline{N P}=\overline{B C}=f_{o} \cdot m \cdot \operatorname{tg} \alpha_{o} \\
\text { and side } & \overline{N C}=\overline{N P}+\overline{P B}+\overline{B C} \tag{12}
\end{array}
$$

Introducing (11) in (12) and taking into account that:

$$
\begin{equation*}
\overline{P B}=t_{o}=0.5 \cdot p_{o}=0.5 \cdot \pi \cdot m \tag{13}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
\overline{N C}=t_{o}+2 \cdot f_{o} \cdot m \cdot \operatorname{tg} \alpha_{o}=0.5 \cdot \pi \cdot m+2 \cdot f_{o} \cdot m \cdot \operatorname{tg} \alpha_{o} \tag{14}
\end{equation*}
$$

Out of Δ EQA there results:

$$
\begin{equation*}
\overline{Q A}=b_{o} \cdot \operatorname{tg} \alpha_{o}=\left(f_{o}+w_{o}\right) \cdot m \cdot \operatorname{tg} \alpha_{o} \tag{15}
\end{equation*}
$$

and:

$$
\begin{equation*}
\overline{S Q}=\overline{E F}=t_{o}-2 \cdot \overline{Q A}=\left[0.5 \cdot \pi-2 \cdot\left(f_{o}+w_{o}\right) \cdot \operatorname{tg} \alpha_{o}\right] \cdot m \tag{16}
\end{equation*}
$$

Out of the figure, there results that the perimeter P has the expression:

$$
\begin{equation*}
P=\overline{E C}+\overline{E F}+\overline{F N}+\overline{N C} \tag{17}
\end{equation*}
$$

Taking into account that $\overline{E C}=\overline{F N}$ and introducing the relations (19), (14) and (16) in (17) we obtain:

$$
\begin{equation*}
P=\left\{2 \frac{2 f_{o}+w_{o}}{\cos \alpha_{o}}+\left[0.5 \pi-2\left(f_{o}+w_{o}\right) \cdot \operatorname{tg} \alpha_{o}\right] \cdot+0.5 \pi+2 \cdot f_{o} \cdot \operatorname{tg} \alpha_{o}\right\} \cdot m \tag{18}
\end{equation*}
$$

Replacing in (18) the values for f_{o}, w_{o}, α_{o}, established in STAS 821-63, we obtain the relation to determine the perimeter wetted by the fluid:

$$
\begin{equation*}
P=7.746 \cdot m \tag{19}
\end{equation*}
$$

The calculation of the channel flow cross section

Out of fig.1.there results the area of the trapeze NCEF:

$$
\begin{equation*}
S=(\overline{N C}+\overline{E F}) \cdot \frac{h_{o}}{2} \tag{20}
\end{equation*}
$$

because: $\overline{N C}=2 \cdot \overline{N R}+\overline{S Q}$ and $\overline{E F}=\overline{S Q}$ the relation (20) becomes

$$
\begin{equation*}
S=(2 \cdot \overline{N R}+\overline{S Q}+\overline{S Q}) \cdot \frac{h_{o}}{2}=2 \cdot(\overline{N R}+\overline{S Q}) \cdot \frac{h_{o}}{2}=(\overline{N R}+\overline{S Q}) \cdot h_{o} \tag{21}
\end{equation*}
$$

Out of Δ NRF there results:

$$
\begin{equation*}
\operatorname{tg} \alpha_{o}=\frac{\overline{N R}}{h_{o}} \Rightarrow \overline{N R}=h_{o} \cdot \operatorname{tg} \alpha_{o}=\left(2 \cdot f_{o}+w_{o}\right) \cdot m \cdot \operatorname{tg} \alpha_{o} \tag{22}
\end{equation*}
$$

Introducing (16) and (22) in (21) we obtain

$$
S=\left\{\left(2 \cdot f_{o}+w_{o}\right) \cdot m \cdot \operatorname{tg} \alpha_{o}+\left[0.5 \cdot \pi-2 \cdot\left(f_{o}+w_{o}\right) \cdot \operatorname{tg} \alpha_{o}\right] \cdot m\right\} \cdot\left(2 \cdot f_{o}+w_{o}\right) \cdot m
$$

or

$$
\begin{equation*}
S=\left\{\left(2 \cdot f_{o}+w_{o}\right) \cdot \operatorname{tg} \alpha_{o}+\left[0.5 \cdot \pi-2 \cdot\left(f_{o}+w_{o}\right) \cdot \operatorname{tg} \alpha_{o}\right]\right\} \cdot\left(2 \cdot f_{o}+w_{o}\right) \cdot m^{2} \tag{23}
\end{equation*}
$$

Replacing in (22) the values of the parameters f_{o}, w_{o}, α_{o} in STAS 821-63 we obtain the relation for the calculation of the channel flow cross section:

$$
\begin{equation*}
\mathrm{S}=3.328 \mathrm{~m}^{2} \tag{24}
\end{equation*}
$$

The calculation of the equivalent hydraulic diameter

For non-circular flow channels or cross sections, the equivalent hydraulic diameter $\mathrm{d}_{\text {ech }}$ is established with the relation:

$$
\begin{equation*}
d_{e c h}=\frac{4 S}{P}[m] \tag{25}
\end{equation*}
$$

Introducing (18) and (23) in (24) we obtain:

$$
\begin{equation*}
d_{e c h}=\frac{4 \cdot 3.328 \cdot m^{2}}{7.746 \cdot m}=1.718 \cdot m \tag{26}
\end{equation*}
$$

The value of the hereby diameter must be less than the value of the critical diameter, being only a function of the m module which was used in generating the geometry of the drums used in corrugating the metal tape.

The calculation of the pitch at the peak of the toothing

Out of fig.1., there results that the pitch at the peak of the toothing p_{e} is calculated with the relation:

$$
\begin{equation*}
p_{e}=\overline{G N}=2 \cdot \overline{G N}+2 \cdot \overline{N P}+t_{o} \tag{27}
\end{equation*}
$$

Because: $2 \cdot \overline{G N}=\overline{E F}=\overline{S Q}$
and: $\overline{N P}=f_{o} \cdot m$ and $t_{o}=0.5 \cdot \pi \cdot m$
Taking into account (15) and introducing (28) and (29) in (12) we obtain:

$$
\begin{equation*}
p_{e}=\left[0.5 \cdot \pi-2 \cdot\left(f_{o}+w_{o}\right) \cdot \operatorname{tg} \alpha_{o}+2 \cdot f_{o}+0.5 \cdot \pi\right] \cdot m \tag{29}
\end{equation*}
$$

By adding up the similar terms, the relation (30) becomes:

$$
\begin{equation*}
p_{e}=\left[\pi-2 \cdot\left(f_{o}+w_{o}\right) \cdot \operatorname{tg} \alpha_{o}+2 \cdot f_{o}\right] \cdot m \tag{31}
\end{equation*}
$$

Introducing the standard values for f_{o}, w_{o} and α_{o} relation (31) becomes:

$$
\begin{equation*}
p_{e}=4.23 \cdot m \tag{32}
\end{equation*}
$$

With the notations for the characteristic dimensions of the reference profile, we establish:

- D_{e} - the peak diameter of the toothing calculated with the relation:

$$
\begin{equation*}
D_{e}=m \cdot\left(z+2 \cdot f_{o}\right) \tag{33}
\end{equation*}
$$

- D_{d} - the pitch diameter of the toothing calculated with the relation:

$$
\begin{equation*}
D_{d}=m \cdot z \tag{34}
\end{equation*}
$$

- D_{i} - the minor diameter of the toothing calculated with the relation:

$$
\begin{equation*}
D_{i}=m \cdot\left[z-2 \cdot\left(f_{o}+w_{o}\right)\right] \tag{35}
\end{equation*}
$$

In table 1. there are established the parameters of the reference rack according to the equivalent hydraulic diameter $d_{e c h}$. The equivalent diameter must be less than or at most equal to the critical quenching diameter $d_{c r t}$ established as per relation (1). As the module was set up in accordance with the equivalent diameter, there can be calculated the geometry of the drums used in corrugating the metal tape which make up the trap grid. The drums are generated with the help of the reference rack.

Table 1. Establishing the mode of the reference rack as per the equivalent diameter

Parameters		$\mathrm{b}_{0}=\mathrm{m} \cdot\left(\mathrm{f}_{0}+\mathrm{w}_{0}\right)$						
		$\mathrm{h}_{0}=\mathrm{m} \cdot\left(2 \cdot \mathrm{f}_{0}+\mathrm{w}_{0}\right)$						
f_{0}	1	$\mathrm{r}_{\mathrm{o}}=\left(\mathrm{w}_{0} \cdot \mathrm{~m}\right) /\left(1-\sin \left(\alpha_{0}\right)\right.$						
W_{0}	0.25	$\mathrm{r}_{0}=0.38 \cdot \mathrm{~m}$						
α_{0}	20°	aria $=\pi \cdot D_{e} \cdot h_{0} / z$						
$\begin{aligned} & \sin \\ & \alpha_{0} \end{aligned}$	0.342	MESG=2.25m						
m	$\begin{aligned} & \mathrm{p}_{\mathrm{o}}=\mathrm{m} \cdot \pi \\ & (\mathrm{~mm}) \end{aligned}$	b_{0} (mm)	$\begin{gathered} \mathrm{h}_{\mathrm{o}} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} r_{\mathrm{o}} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \text { (tooth) } \end{gathered}$	$\begin{gathered} \text { area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	perimeter (mm)	$\begin{gathered} \mathrm{d}_{\mathrm{ech}} \\ (\mathrm{~mm}) \end{gathered}$
0.18	0.57	0.23	0.41	0.068	32	0.431	1.39	0.31
0.2	0.63	0.25	0.45	0.076	33	0.532	1.55	0.34
0.22	0.69	0.28	0.50	0.084	34	0.644	1.70	0.38
0.25	0.79	0.31	0.56	0.095	35	0.832	1.94	0.43
0.28	0.88	0.35	0.63	0.106	36	1.044	2.17	0.48
0.3	0.94	0.38	0.68	0.114	37	1.198	2.32	0.52
0.35	1.10	0.44	0.79	0.133	38	1.631	2.71	0.60
0.4	1.26	0.50	0.90	0.152	39	2.130	3.10	0.69
0.45	1.41	0.56	1.01	0.171	40	2.695	3.49	0.77
0.5	1.57	0.63	1.13	0.190	41	3.328	3.87	0.86
0.55	1.73	0.69	1.24	0.209	42	4.027	4.26	0.95
0.6	1.88	0.75	1.35	0.228	43	4.792	4.65	1.03
0.7	2.20	0.88	1.58	0.266	44	6.522	5.42	1.20
0.8	2.51	1.00	1.80	0.304	45	8.519	6.20	1.37
0.9	2.83	1.13	2.03	0.342	46	10.782	6.97	1.55
1	3.14	1.25	2.25	0.380	47	13.311	7.75	1.72
1.125	3.53	1.41	2.53	0.427	48	16.847	8.71	1.93
1.25	3.93	1.56	2.81	0.475	49	20.798	9.68	2.15

The calculation of the winding diameter

When calculating the length of the flat tape (bar) we shall use the notations in fig. 2 .
For the winding of the tape sheet, there shall be used a bushing with the exterior diameter d on which there shall be wound the tape sheet made out of a bar tape and a corrugated one. Considering the thickness of the bar and corrugated tape as being equal to g and the corrugations of the height tape h, the diameters D_{i} after each winding shall be calculated with the expressions:

Fig. 2. Geometric elements of the crimped matal ribbon

$$
\begin{align*}
& \quad D_{1}=d+2 \cdot(h+g) \\
& D_{2}=D_{1}+2 \cdot(h+g)=d+2 \cdot(h+g)+2 \cdot(h+g)=d+2 \cdot(2 \cdot(h+g) \\
& D_{3}=D_{2}+2 \cdot(h+g)=d+2 \cdot[2 \cdot(h+g)]+2 \cdot(h+g)=d+3 \cdot[2 \cdot(h+g)] \\
& \tag{36}\\
& \quad \vdots \\
& D_{i}=d+i \cdot[2 \cdot(h+g)]
\end{align*}
$$

Out of relation (36) there results the expression for the calculation of number i for the tape windings:

$$
\begin{equation*}
i=\frac{D_{i}-d}{2 \cdot(h+g)} \tag{37}
\end{equation*}
$$

The calculation of the winding length for the flat ribbon

In order to establish the calculation relation of the length of the metal tape which is wound on a bushing of d exterior diameter, using the notations in fig.2, there shall be written the relation for each winding, starting with winding 1 up to winding i. Firstly, there shall be established the relation for the length of the flat ribbon:

$$
\begin{align*}
& L_{1}=\pi \cdot D_{1}=\pi \cdot[d+2 \cdot(h+g)]=\pi \cdot d+\pi \cdot 1 \cdot[2 \cdot(h+g)] \\
& L_{2}=\pi \cdot D_{2}=\pi \cdot\{d+2 \cdot[2 \cdot(h+g)]\}=\pi \cdot d+\pi \cdot 2 \cdot[2 \cdot(h+g)] \\
& L_{3}=\pi \cdot D_{3}=\pi \cdot\{d+3 \cdot[2 \cdot(h+g)]\}=\pi \cdot d+\pi \cdot 3 \cdot[2 \cdot(h+g)] \\
& \vdots \tag{38}\\
& L_{i}=\pi \cdot D_{i}=\pi \cdot\{d+i \cdot[2 \cdot(h+g)]\}=\pi \cdot d+\pi \cdot i \cdot[2 \cdot(h+g)]
\end{align*}
$$

The total winding length L shall be calculated by summing up the interjacent windings, as per the relation:

$$
\begin{equation*}
L=\sum_{i} L_{i}=\sum_{i}\{\pi \cdot d+\pi \cdot i \cdot[2 \cdot(h+g)]\} \tag{39}
\end{equation*}
$$

Introducing relation (37) in relation (39) we obtain the relation for the length of the flat ribbon:

$$
\begin{equation*}
L=\pi \cdot \frac{D_{i}-d}{4 \cdot(h+g)} \cdot\left[D_{i}+d+2 \cdot(h+g)\right] \tag{40}
\end{equation*}
$$

The calculation of the length of the crimped ribbon

By means of the notations in fig.2. there shall be calculated the length of the crimped ribbon, noticing the fact that for a pitch to peak $p_{e}=4.23 \cdot m$ given by the relation (32) there corresponds a developed length of the crimped ribbon $l_{\text {ond }}$ equal to:

$$
\begin{equation*}
l_{\text {ond }}=2 \cdot \overline{E C} \tag{41}
\end{equation*}
$$

Introducing relation (8) in relation (41) we obtain:

$$
\begin{equation*}
l_{\text {ond }}=2 \cdot \frac{2 \cdot f_{o}+w_{o}}{\cos \alpha_{o}} \cdot m \tag{42}
\end{equation*}
$$

To the total length L of the flat ribbon there correspond $\frac{L}{p_{e}}$ pitches to the peak. If for a pitch to the peak there corresponds a length of crimped ribbon $l_{\text {ond }}$ given by the relation (42), then for the $\frac{L}{p_{e}}$ pitches to the peak there corresponds a length of crimped ribbon:

$$
\begin{equation*}
L_{\text {ond }}=L \cdot \frac{l_{\text {ond }}}{p_{e}} \tag{43}
\end{equation*}
$$

Introducing relations (32) and (42) in relation (43) we obtain:

$$
\begin{equation*}
L_{\text {ond }}=L \cdot \frac{2 \cdot \frac{2 \cdot f_{o}+w_{o}}{\cos \alpha_{o}} \cdot m}{4.23 \cdot m}=L \cdot \frac{2 \cdot \frac{2 \cdot f_{o}+w_{o}}{\cos \alpha_{o}}}{4.23}=2 \cdot L \cdot \frac{2 \cdot f_{o}+w_{o}}{4.23 \cdot \cos \alpha_{o}} \tag{44}
\end{equation*}
$$

Replacing in (44) the values stipulated in STAS 821-63 for f_{o}, w_{o}, α_{o} we obtain:

$$
\begin{equation*}
L_{\text {ond }}=2 \cdot \frac{2 \cdot 1+0.25}{4.23 \cdot 0.9397} \cdot L=1.131 \cdot L \tag{45}
\end{equation*}
$$

The calculation of occupied area of the flat and crimped ribbon

The area occupied by the two ribbons $S_{\text {band }}$ shall be calculated by multiplying the total length $L_{t}=L+L_{\text {ond }}$ with the thickness g of the tapes:

$$
\begin{equation*}
S_{b a n d}=L_{t} \cdot g=(L+1.131 \cdot L) \cdot g=2.131 \cdot L \cdot g \tag{46}
\end{equation*}
$$

The calculation of the gas flow section

For a diameter D_{i} of the roller of the trap grid, the efficient flow section $S_{e f}$ of the gas is given by the difference between the area of diameter D_{i} and the area occupied by the two tapes $S_{\text {band }}$ given by the relation (46):

$$
\begin{equation*}
S_{e f}=\frac{\pi \cdot D_{i}^{2}}{4}-2.131 \cdot L \cdot g \tag{47}
\end{equation*}
$$

where: L - is the length of the flat ribbon given by the relation (40); g - the thickness of the ribbon.
In table 2. it is presented the result of the calculation as a result of the implementation, in a program of table calculus, of the methodology to establish the geometric parameters which characterize the crimped ribbon used in executing the grid of dry flame arresters. where:
d_{o} - the exterior diameter of the winding bushing;
d_{i} - the maximum winding diameter;
g - the thickness of the ribbon used in making up the trap grid;
l - the width of the trap grid;
h - the height of the wave of the tape.
Table 2. The calculation of the geometric parameters of the grid made out of corrugated tape

The calculation of the number of channels in the composition of a grid

Knowing the flow cross section of a channel (24) and the effective flow section given by the relation (47) there can be calculated the number of channels per area unit n_{c} with the relation:

$$
\begin{equation*}
n_{c}=\frac{S_{e f}}{S}=\frac{\frac{\pi \cdot D_{n}^{2}}{4}-2.131 \cdot L \cdot g}{\frac{\pi \cdot 1.71 \cdot m}{4}} \tag{48}
\end{equation*}
$$

where: D_{n} - the nominal diameter of the grid case; L - the total length of the ribbon; g - the total thickness of the flat and of the crimped one; m - the mode of the reference rack.

References

1. Pave1, A. Paraschiv, M., Voicu, I. Protecția antiexplozivă a instalatitilor tehnologice. Editura tehnică.Bucureşti, pag.1-25, 1993.
2. Crabogdan, I. G., Badea, A., Ionescu, L., Leca, A. Ghia, V. Nistor, I. Instalații termice industriale. Editura. Tehnică. Bucureşti, pag.41, 1978.
3. Dima, M. Organe de maşini, vol III. Academia Militară, Bucureşti, pag.28-32, 34-35,1978.
4. http:/www.protego.pag. 5
5. Stanley, S. G. Deflagration and Detonation Flame Arresters, Center for Chemical Process Safety of the American Institute of Chemical Engineers, 3 Park Avenue, New York 10016-5991. pag.77-117.
6. Schneider, A. U.S. Coast Guard, Personal communication from Dr. Alan Schneider, to S.S. Grossel, June 2, 2000.
7. Schwartz, R. Personal communication from Robert Schwartz, John Zink Company, to S.S. Grossel.March 13.2000.
8. Forster, H. Flame Arresters - The Standard and the Consequences. Paper prezented at the Intl. European Saftey Management Group Sympos.-Process Safety and Industrial Explosion Protection, March 27-29. 2001.
9. Groman, L. Applying Detonation Flame Arresters. Paper prezented at the $20^{\text {th }}$ Annual ILTA Conference, June 12-15, Huston, TX. 2000.

Calculul parametrilor grilei din bandă ondulată pentru opritorii de flăcări

Rezumat

Lucrarea prezintă soluții pentru determinarea parametrilor cremalierei de referință care generează angrenajele ce ondulează banda. Prezentarea formulelor de calcul pentru parametrii grilei opritoare, oferă posibilitatea determinării unor caracteristici funcționale pentru grila opritorilor de flăcări cum ar fi: diametrul hidraulic echivalent, lungimea benzilor ce alcătuiesc grila, greutatea grilei, raportul de opturare al opritorului, numărul de canale pe unitatea de suprafață.

