The Torsion of Thin Wall I-Profile Section Beams With Uneven Legs

Constantin Manea, Ion Eparu

Oil-Gas University in Ploieşti, Bd. Bucureşti nr. 39, România
e-mail:ieparu@upg-ploiesti.ro

Abstract

The paper presents a method for calculating movement and tensions that appear in straight, thin-walled, I-section poles with uneven legs while stressed in torque. The calculus method considers the real situation, when section movement is blocked, leading to both normal and tangent tensions. The results obtain using this method differ from those using the elementary torque stress theory that considers section movement to be free. Therefore, the method presented in this paper should be used for proper sizing of this pole types.

Keywords: torque, momentum and bi-momentum of bending-torsion, stress.

Sectorial Caracteristics For I_Shaped Section With Uneven Legs

The center of gravity O and the center of bending - torsion are on the symmetry axis .
The distance between the P pole and the center of gravity O is:

$$
\begin{equation*}
P O=\frac{s_{3} \cdot t_{3} \cdot s_{2}+\left(s_{2}-\frac{t_{1}+t_{3}}{2}\right) \cdot t_{2} \cdot \frac{s_{2}}{2}}{s_{1} \cdot t_{1}+\left(s_{2}-\frac{t_{1}+t_{3}}{2}\right)+s_{3} \cdot t_{3}} \tag{1}
\end{equation*}
$$

To determine C the starting point is the arbitrary pole P and the origin radius $P y$. The diagram of the sectorial coordinates $\omega_{P}=\int_{0}^{s} h_{P} \cdot d s$, is illustrated in figure $1, b$.
For the D_{1} and D_{2} points, the following values are obtained:

$$
\omega_{P}\left(D_{1}\right)=-\frac{1}{2} \cdot s_{2} \cdot s_{3} ; \quad \omega_{P}(D)=0 \text { and } \quad \omega_{P}\left(D_{2}\right)=\frac{1}{2} \cdot s_{2} \cdot s_{3}
$$

The position of C on the $O y$ axis is determined according to [2],

$$
\begin{equation*}
a_{y}=P C=\frac{\int_{(A)} \omega_{P} \cdot z \cdot d A}{I_{y}} \tag{2}
\end{equation*}
$$

We draw the diagram of z (fig. $1, c$) and applying the rule of Vereşceaghin we obtain:

$$
\begin{equation*}
\int_{(A)} \omega_{P} \cdot z \cdot d A=\frac{1}{12} \cdot s_{2} \cdot s_{3}^{3} \cdot t_{3} \tag{3}
\end{equation*}
$$

We calculate the moment of inertia in respect to the $O y$ axis:

$$
\begin{equation*}
I_{y}=\frac{1}{12} \cdot\left[s_{1}^{3} \cdot t_{1}+\left(s_{2}-\frac{t_{1}+t_{3}}{2}\right) \cdot t_{2}^{3}+s_{3}^{3} \cdot t_{3}\right] \tag{4}
\end{equation*}
$$

e)

d)

Fig. 1
With the bending torsion pole C we determine the new diagram $\omega=\omega_{C}$ (fig. $1, d$). The origin radius remains the symmetry axis $O y$.

As a result, on the upper leg in B_{1} and on the lower leg in D_{1} :

$$
\omega\left(B_{1}\right)=\frac{1}{2} \cdot a_{y} \cdot s_{1} ; \omega\left(D_{1}\right)=-\frac{1}{2} \cdot\left(s_{2}-a_{y}\right) \cdot s_{3}
$$

The static sectorial moment (5) has the diagram illustrated in figure $1, e$.

$$
\begin{equation*}
S_{\omega}=\int_{\left(A_{1}\right)} \omega \cdot d A \tag{5}
\end{equation*}
$$

On the heart S_{ω} is null. On the upper leg from B_{1} to B_{2}, S_{ω} has a parabolic variation.

$$
\begin{equation*}
S_{\omega \max }=\frac{1}{8} \cdot a_{y} \cdot s_{1}^{2} \cdot t_{1} \tag{6}
\end{equation*}
$$

On the lower leg from D_{1} to $D_{2} S_{\omega}$ has a parabolic variation.

$$
\begin{equation*}
S_{\omega, D}=-\frac{1}{8} \cdot\left(s_{2}-a_{y}\right) \cdot s_{3}^{2} \cdot t_{3} \tag{7}
\end{equation*}
$$

The sectorial moment of inertia is calculated by integrating the ω diagram (fig. 1,d) with itself:

$$
\begin{equation*}
I_{\omega}=\int_{(A)} \omega^{2} \cdot d A=\frac{1}{3} \cdot s_{1} \cdot\left(\frac{a_{y} \cdot s_{1}}{s}\right)^{2} \cdot t_{1}+\frac{1}{3} \cdot s_{3} \cdot\left[\frac{\left(s_{2}-a_{y}\right) \cdot s_{3}}{2}\right]^{2} \cdot t_{3} \tag{8}
\end{equation*}
$$

The torsion moment of inertia with free movement:

$$
\begin{equation*}
I_{t}=\frac{1}{3} \cdot\left[s_{1} \cdot t_{1}^{3}+\left(s_{2}-\frac{t_{1}+t_{3}}{2}\right) \cdot t_{2}^{3}+s_{3} \cdot t_{3}^{3}\right] \tag{9}
\end{equation*}
$$

Application

Let us consider the $A B$ beam (fig. 2, a) perfectly encased in A and free in B, having a length of $l=2 m$, and a cross-section as illustrated in fig. 2, b. The pole is under uniform distributed moments of torsion (fig. $2, a$) of m_{t} intensity.
The rotation φ of the y-axis section x, around the $C x$ axis function of the original parameters from the paper [1] has the expression:

$$
\begin{equation*}
\varphi=\varphi_{0}+\varphi_{0}^{\prime} \frac{\operatorname{shkx}}{k}+\frac{B_{w, 0}}{G \cdot I_{t}} \cdot(1-\operatorname{ch} k x)+\frac{M_{x, 0}}{k \cdot G \cdot I_{t}} \cdot(k x-\operatorname{sh} k x)+\bar{\varphi} \tag{10}
\end{equation*}
$$

Function of $\varphi(x)$ from the paper [1] the expression is:

- The bending-torsion bimomentum

$$
\begin{equation*}
B_{\omega}=-E \cdot I_{\omega} \cdot \frac{d^{2} \varphi}{d x^{2}}=-E \cdot I_{\omega} \cdot \varphi^{\prime \prime} \tag{11}
\end{equation*}
$$

- The bending-torsion momentum

$$
\begin{equation*}
M_{\omega}=-E \cdot I_{\omega} \cdot \frac{d^{3} \varphi}{d x^{3}}=-E \cdot I_{\omega} \cdot \varphi^{\prime \prime \prime} \tag{12}
\end{equation*}
$$

- The moment of torsion corresponding to the free movement

$$
\begin{equation*}
M_{t}=M_{x}-M_{w}=-G \cdot I_{t} \cdot \frac{d \varphi}{d x}=-G \cdot I_{t} \cdot \varphi^{\prime} \tag{13}
\end{equation*}
$$

In this case, the particular solution, given by [1], is:

$$
\begin{equation*}
\bar{\varphi}=-\frac{m_{t}}{G \cdot I_{t}} \cdot\left[\frac{1}{2} \cdot(k x)^{2}+(1-c h k x)\right] \tag{14}
\end{equation*}
$$

Choosing the origin O to be the encasement in $\mathrm{A}, O \equiv A$, we know: $\varphi_{0}=0$ and ${\varphi_{0}}^{\prime}=0$, because the u on the $O x$ axis is null.
From the equation of moments in respect to the $O x$ axis (fig. 2, a) we obtain
$M_{x, A}=m_{t} \cdot l$, so $M_{x, 0}=m_{t} \cdot l$.
With these values the expression (10) becomes:

$$
\begin{equation*}
\varphi=\frac{B_{\omega, 0}}{G \cdot I_{t}} \cdot(1-c h k x)+\frac{m_{t} \cdot l}{k \cdot G \cdot I_{t}}(k x-\operatorname{shkx})-\frac{m_{t}}{k^{2} \cdot G \cdot I_{t}}\left[\frac{1}{2} \cdot(k x)^{2}+(1-c h k x)\right] \tag{15}
\end{equation*}
$$

At the free end $B(x=l)$, since $\sigma_{\omega}=0$, the condition $B_{\omega}(l)=0$ must be fulfilled, which using (11), becomes:

$$
\begin{equation*}
B_{\omega}(l)=-E \cdot I_{\omega} \cdot \varphi^{\prime \prime}(l)=B_{\omega, 0} \cdot \operatorname{ch} k l+\frac{1}{k} \cdot m_{t} \cdot l \cdot \operatorname{sh} k l+\frac{m_{t}}{k^{2}}(1-\operatorname{ch} k l)=0 \tag{16}
\end{equation*}
$$

From this we obtain the value:

$$
\begin{equation*}
B_{\omega, 0}=-\frac{m_{t} \cdot l}{k} \cdot \Phi(k l) \tag{17}
\end{equation*}
$$

where:

$$
\begin{equation*}
\Phi(k l)=\frac{1}{k l \cdot \operatorname{chkl}} \cdot(k l \cdot \operatorname{sh} k l+1-\operatorname{ch} k l) \tag{18}
\end{equation*}
$$

Introducing (17) in (15), we obtain the function of rotation φ (fig. 2, c):

$$
\begin{equation*}
\varphi=\frac{m_{t} \cdot l}{k \cdot G \cdot I_{t}} \cdot\left[-\left(\Phi+\frac{1}{k \cdot l}\right) \cdot(1-\operatorname{ch} k x)+k x-\operatorname{sh} k x-\frac{1}{2} \cdot \frac{k \cdot x^{2}}{l}\right] . \tag{19}
\end{equation*}
$$

The derivate of this (fig. 2, d) is

$$
\begin{equation*}
\varphi^{\prime}=\frac{m_{t} \cdot l}{G \cdot I_{t}} \cdot\left[\left(\Phi+\frac{1}{k \cdot l}\right) \cdot \operatorname{sh} k x-\operatorname{ch} k x+\frac{l-x}{l}\right] . \tag{20}
\end{equation*}
$$

With the expression (11) we determine the bimomentum of bending - torsion (fig. 2,e):

$$
\begin{equation*}
B_{\omega}=-E \cdot I_{\omega} \cdot \varphi^{\prime \prime}=-\frac{m_{t} \cdot l^{2}}{k \cdot l} \cdot\left[\left(\Phi+\frac{1}{k \cdot l}\right) \cdot \operatorname{ch} k x-\operatorname{sh} k x-\frac{1}{k \cdot l}\right] . \tag{21}
\end{equation*}
$$

Applying the (12) expression we get the bending - torsion momentum (fig. 2, f):

$$
\begin{equation*}
M_{\omega}=E \cdot I_{\omega} \cdot \varphi^{\prime \prime \prime}=m_{t} \cdot l \cdot\left[\left(\Phi+\frac{1}{k \cdot l}\right) \cdot \operatorname{sh} k x-\operatorname{ch} k x\right] . \tag{22}
\end{equation*}
$$

With (14) we determine the torsion momentum corresponding to the free movement:

$$
\begin{equation*}
M_{t}=-G \cdot I_{t} \cdot \varphi^{\prime}=-m_{t} \cdot l \cdot\left[\left(\Phi+\frac{1}{k \cdot l}\right) \cdot \operatorname{sh} k x-\operatorname{ch} k x+\frac{l-x}{l}\right] . \tag{23}
\end{equation*}
$$

as illustrated in fig $2, g$.
The values from the diagrams are calculated for the section present in fig. $2, b$, which has:

$$
\begin{gather*}
\int_{(A)} \omega_{P} \cdot z \cdot d A=\frac{1}{12} \cdot s_{3}^{3} \cdot s_{2} \cdot t_{3}=43,2 \cdot 10^{7} \mathrm{~mm}^{5} ; I_{y}=42,653 \cdot 10^{6} \mathrm{~mm}^{4} ; \\
a_{y}=\frac{\int_{(A)} \omega_{P} \cdot z \cdot d A}{I_{y}}=101,3 \mathrm{~mm} ; P O=141 \mathrm{~mm} ; I_{t}=14,12 \cdot 10^{4} \mathrm{~mm}^{4} . \\
\sigma_{\omega}=\frac{B_{\omega}}{I_{\omega}} \cdot \omega ; \tau_{\omega}=\frac{M_{\omega} \cdot S_{\omega}}{t \cdot I_{\omega}} \cdot \omega ; \tau_{t}=\frac{M_{t}}{I_{t}} \cdot t \tag{24}
\end{gather*}
$$

The diagram of normal stresses σ_{ω}, fig $2, h$.

From the diagram $\omega=\omega_{c}$ (fig. $1, d$), we get:

$$
\omega\left(D_{2}\right)=-\omega\left(D_{1}\right)=11,922 \cdot 10^{3} \mathrm{~mm}^{2} ; \quad \omega\left(B_{1}\right)=-\omega\left(B_{2}\right)=7,5975 \cdot 10^{3} \mathrm{~mm}^{2}
$$

g)

h)

Fig. 2.

In the encasing section $A(x=0), B_{\omega, A}=-0,3377 \cdot m_{t} l^{2}$:

$$
\sigma_{\omega}\left(D_{1}\right)=-\sigma_{\omega}\left(D_{2}\right)=0,18788 \frac{m_{t}}{\mathrm{~mm}^{2}} ; \quad \sigma_{\omega}\left(B_{2}\right)=-\sigma_{\omega}\left(B_{1}\right)=0,11973 \frac{m_{t}}{\mathrm{~mm}^{2}} .
$$

The diagram of tangential stresses τ_{ω}, fig $2, i$.From the S_{ω} diagram (fig.1,e) we get:

$$
S_{\omega}(D)=357,66 \cdot 10^{4} \mathrm{~mm}^{4} ; S_{\omega}(P)=284,906 \cdot 10^{4} \mathrm{~mm}^{4} .
$$

In the encasing section $A(x=0)$, where $M_{\omega, A}=-m_{t} \cdot l($ fig $2, f)$, we get:

$$
\tau_{\omega}(D)=8,345 \cdot 10^{-3} \frac{m_{t}}{\mathrm{~mm}^{2}} ; \tau_{\omega}(P)=6,648 \cdot 10^{-3} \frac{m_{t}}{\mathrm{~mm}^{2}} .
$$

From the resistance condition, after T_{τ}, in the point D_{1} from the $A(x=0)$ section,

$$
\sigma_{\text {ech }}=\sigma_{\omega}\left(D_{1}\right)=0,18788 \frac{\mathrm{~m}_{t}}{\mathrm{~mm}^{2}}=\sigma_{a}=150 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}, \text { we get: } m_{t}=798,4 \frac{\mathrm{~N} \cdot \mathrm{~mm}}{\mathrm{~mm}}
$$

In all other points of the pole the resistance condition is met.
So, from fig. $2, i$, in the D point of the $A(x=0)$ section,

$$
\tau_{\omega}(D)=8,345 \cdot 10^{-3} \cdot 794,4=6,7 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} ; \sigma_{\omega}(D)=0 ; \tau_{t}=0
$$

the resistance condition, after T_{τ},

$$
\sigma_{e c h}=\sqrt{\sigma^{2}+\tau^{2}}=2 \cdot \tau_{\max }=13,4 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\sigma_{a}=150 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}, \text { is met. }
$$

Conclusions

The paper presents a method to calculate stresses and displacements that appear in thin-walled Ishaped poles with uneven legs. The calculus method considers transversal section displacement to be impaired, real cases generating both normal and tangential stress. For thin sections, this stresses become very high thus breaking the poles. So a resistance check is needed, using the above-presented method.

References

1. Posea, N., Anghel, Al., Manea, C., Hotea, Gh., Rezistența materialelor. Editura Ştiințifică şi Enciclopedică, Bucureşti, 1986.
2. Posea, N., Rezistența materialelor. Editura Didactică şi Pedagogică, Bucureşti, 1979.
3. Manea, C., Eparu, I., The torsion of poles with thin walls having an I profile section. Volumul celei de a II-a ediții a conferinței internaționale I.C.E.M., Petroşani, 24-26 mai 2007.
4. Manea, C., Eparu, I., The torsion of thin wall poles with annular section, cut according to a generating line. Volumul celei de a II-a ediții a conferinței internaționale I.C.E.M., Petroşani, 24-26 mai 2007.

Torsiunea barelor cu pereti subțiri, profil I cu aripi neegale

Rezumat

Lucrarea prezintă o metodă pentru calculul tensiunilor şi deplasărilor ce apar in barele drepte cu pereți subțiri având seç̧tiuni în formă de I, cu tălpile neegale, solicitate la torsiune.

