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Abstract 

The problem of thermal fatigue in mixing areas arises in nuclear piping where a turbulent mixing or 
vortices produce rapid fluid temperature fluctuations with random frequencies. The assessment of fatigue 
crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, 
principally due to the difficulty of establishing the actual loading spectrum. To apply the stochastic 
approach of thermal fatigue, a frequency temperature response function is proposed. For the elastic 
thermal stresses distribution solutions, the magnitude of the frequency response function is first derived 
and checked against the prediction by FEA. The connection between SIF’s power spectral density (PSD) 
and temperature’s PSD is assured with SIF frequency response function modulus. The frequency of the 
peaks of each magnitude for KI is supposed to be a stationary narrow-band Gaussian process. The 
probabilities of failure are estimated by means of the Monte Carlo methods considering a limit state 
function.  
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Introduction 

The assessment of the thermal fatigue damage (crack initiation) and subsequent crack growth 
due to thermal stresses from turbulent mixing or vortices in light water reactor (LWR) piping 
systems remains a demanding task and effort continues to be devoted to experimental, FEA and 
analytical studies. The problem of thermal fatigue in mixing areas arises in pipes where a 
turbulent mixing or vortices produce rapid fluid temperature fluctuations with random 
frequencies. Structures exposed to such temperature fluctuations can suffer thermal fatigue 
damage and, subsequently, cracking phenomena, which can produce through wall cracks. 
Thermal striping is defined as a random temperature fluctuation produced by incomplete mixing 
of fluid streams at different temperatures. It can arise in certain light water reactor, but also in 
certain fast breeder reactor structures, notably those situated above the core, because of the large 
temperature differences that exist between sodium emerging from the core sub-assemblies and 
from the breeder sub-assemblies. Other areas of potential occurrence include pressurized water 
reactor nozzles where stratified flows are encountered. In dry-out zones in steam generators, the 
fluid/steam boundary can oscillate and induce temperature fluctuations on component surface 
[1]. The results in temperature fluctuations can be local or global and induce random variations 
of the local temperature gradients in the structural walls of the pipe, which lead to cyclic 
thermal stresses and strains. The strain variations result in fatigue damage, cracking and crack 
growth. In particular, one of the most complex issues is the accurate representation of the load. 
Transient temperature response in the interior of an infinite slab to a sinusoidal surface-
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temperature input has been investigated by several researchers [2, 3, 4, 5]. For cylindrical 
geometry it was used mainly isothermal internal boundary condition and with various type of 
thermal loading at outer surface [1, 6, 7]. The determination of the influence of such a random 
process on subsurface temperatures is of great importance in establishing the proper depth at 
which temperature sensitive becomes a concern. Utilizing the method of random process theory 
it is possible to determine statistical averages such as the mean and standard deviation of the 
response from the corresponding statistical description of the input process provided that the 
governing differential equations are linear. If in addition the applied random process is normally 
distributed the output process will also be normal. This will be assumed in this case. The effect 
of spatial incoherence in surface temperature fluctuation can be used to calculate the mean 
square stresses and the mean square equivalent strain range that may be used as a measure of 
crack initiation likelihood [8]. Also, this type of incoherence has effect on the stress intensity 
factor in thermal striping. By assuming a perfect spatially coherence but a temporal incoherence 
it was developed a method of calculating the crack propagation using linear elastic fracture 
mechanics and stochastic properties of temperature spectrum [6].Thermal striping remains an 
important subject in the structural integrity area, also for future fast spectrum reactors [9], with 
the objective of establishing thermal striping limits or appropriate screening criteria. 

The present study proposes a stochastic model to assess thermal fatigue crack growth in mixing 
tees, based on the power spectral density (PSD) of temperature fluctuation at the inner pipe 
surface. The results of the stochastic approach to thermal fatigue crack growth in mixing tees, 
completed with the probabilistic input to account for the variability in the material 
characteristics, are given as probability of failure as function of time reference period. The 
Civaux 1 damage case is chosen as application of the model predictions.  

Statistical Properties of the Thermal Spectrum and the Temperature 
Frequency Response Function  

The main assumption is that the temperature spectrum at the inner pipe surface can be modeled 
as a stationary Gaussian narrow-band process [6], and that its power spectral density is known. 
Firstly, an analytical solution for temperature distribution in the wall-thickness of the pipe is 
derived under sinusoidal thermal loading at the inner surface. A frequency temperature response 
function is proposed, in the framework of the single-input single-output approach. In the next 
step the frequency response function is proposed both for stress and stress intensity factor 
distributions. 

The analytical solution for the time dependent temperature profile for an infinite hollow 
cylinder has been developed in a previous paper [10]. A short overview will be given as follows. 
Assuming an infinite hollow cylinder made of a homogeneous isotropic material, with inner and 
outer radii ri and ro, the 1D heat diffusion equation has the form: 

2

2

1 1
r r r k t

∂ Θ ∂Θ ∂Θ
+ =

∂ ∂ ∂
, (ri ≤ r ≤ ro, t ≥ 0)                                        (1) 

where 
0( , ) ( , )r t T r t TΘ = −                                                                    (2) 

is the temperature change from the reference temperature at any radial position r and at time t. 
The reference temperature T0 is the body temperature in the unstrained state or the temperature 
at the initial state. The thermal diffusivity is defined as 

k
c
λ
ρ

=                                                                                  (3) 
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where λ is the thermal conductivity, ρ is the mass density and c is the specific heat conduction. 
The solution Θ(r,t) must satisfy the boundary conditions: 

( , ) ( ),ir t q tΘ = (t≥ 0)                                                                (4) 

0( , ) 0,r tΘ = (t≥ 0)                                                                    (5) 

and the initial condition 
( ,0) 0,rΘ = (ri ≤ r ≤ ro)                                                           (6) 

The function q(t) is a known function of time representing the thermal boundary condition 
applied at the inner surface of cylinder. The analytical solution for the arbitrary boundary 
condition, q(t), is given in [10] by using the finite Hankel transform, and it is expressed by: 
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Here J0 (z), Y0 (z) are Bessel functions of first and second kind of order 0 and sn are the positive 
roots of the transcendental equation: 

( ) ( ) ( ) ( )0 0 0 0 0n i n o n i n oY s r J s r J s r Y s r− = .                                          (8) 

A sinusoidal thermal loading at the inner pipe surface is assumed: 

( ) ( )0 0( ) sin sin 2q t t ftω π= Θ ⋅ = Θ ⋅                                          (9) 

where Θ0 is the amplitude of temperature wave, ω and f correspond to angular frequency in 
radians/second and cycles/second (Hz), respectively, and t is time. Then the final form of the 
analytical solution for the temperature distribution through the wall-thickness of the pipe is 
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In the article [10] the predictions of the analytical solution, given by equation (10), have been 
checked by a comparison with the finite element analyses performed with ABAQUS computer 
code (fig. 1), with good agreement [10, 11]. 

The steady-state response of a linear single-input, single-output system (SISO) [12] to a real 
sinusoidal input of the form: 

( ) sin( )u t A tω ψ= +                                                              (11) 

is a sinusoidal function. Here A is the amplitude of the input and ψ is an arbitrary phase angle. 
For sake of simplicity we consider ψ=0. This function has the same angular frequency ω as the 
input, but modified in its amplitude by the factor ( )H ω , and shifted in phase by the quantity 

φ(iω) 
( ) ( ) sin( ( ))sy t A H t iω ω ψ ϕ ω= + +                                           (12) 
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Fig. 1. Comparison between analytical predictions and FEA temperature  

profiles for a thermal loading at frequency f=0.5Hz [10] 
 
Thus, in general, the steady state response of a linear single-input, single-output system to a 
sinusoidal input u(t)=A sinωt can be characterized in terms of the magnitude of the frequency 
response function (FRF), ( )H ω , and the phase shift φ(iω)=∠H(ω). The magnitude of the 
frequency response function represents the ratio of the output amplitude to the input amplitude 
as a function of frequency. 

The temperature fluctuations in the pipe-wall is then given by 

( ) ( ) [ ]0, , , sinTr t H r tω ω ω ϕΘ ≈ Θ × −                                       (13) 

where ( , )TH r ω  is the magnitude of temperature frequency response function. 
In a conservative way, if the lag phase is approximate as ϕ≈0, a comparison between 
temperature profiles through thickness predicted by equations (10) and (13) are displayed in 
Figure 2. With the same temperature range at the inner pipe surface and with a slightly deeper 
penetration through the wall, the prediction of temperature response with assumed magnitude of 
frequency temperature response may be reasonable accounted. Figure 3 shows the influence of 
the loading frequency, in case of sinusoidal input, on the temperature frequency response 
magnitude, for several points inside across the wall of the pipe, considering the geometry and 
parameters from Civaux case [13]. The highest value of response is obtained at x/l=4/9=0.44, 
while for deeper points in the pipe-wall its values decrease fast for whole range of frequencies. 
 

 
Fig. 2. Comparison between predictions of temperature profile from complete analytical solution and 
those obtained by means of the analytical temperature frequency response function in the pipe wall 
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Fig. 3. Dependence of temperature frequency response magnitude on the loading frequency for various 

depths through the thickness (l is the wall-thickness and x originates at inner pipe surface). 

Modeling of the Stress Response to Random Thermal Input 

To obtain the stress frequency response function a similar approach is used. The general 
solution of elastic thermal stress components (hoop, radial and axial) related to a sinusoidal 
loading at the inner surface was derived in [10]. Subsequently, the stress frequency response is 
obtained by means of temperature frequency response function, which will be used in the 
corresponding analytical solution for stress distribution. A comparison with FEA prediction is 
made together with a sensitivity analysis versus frequency range.The hoop stress distribution at 
each time increment is given by the following relationships in the case of plane strain [14]: 

2 2

1 22 2 2 2

1( , , ) ( , , ) ( , ) ( , , )
1 ( )

E r ar t I r t I t r t
r r b aθ

ασ ω ω ω ω
ν
⎡ ⎤⋅ +

= ⋅ + ⋅ −Θ⎢ ⎥− ⋅ −⎣ ⎦
         (14) 

The mathematical relationships for the integrals I1(r,ω,t) and I2(ω,t) are given in [10, 11, 15]. 

In the present application only hoop stress component, σθ, is considered, to derive its frequency 
response function, but with a similar approach the frequency response forms for radial (σr ) and 
axial (σz ) stresses can be obtained. The general approach is to substitute the temperature 
frequency response function in the solution of thermal stress components to make possible 
obtaining the stress frequency response function [7]. Both integrals may be written in the form 
similar to equation (13), such as: 

( ) ( ) ( )
11 0 ,

1

, , , , sinI n n
n

I r t H r s tω ω ω ϕ
∞

=

⎡ ⎤≈ Θ ⋅ ⋅ −⎢ ⎥⎣ ⎦
∑                            (15) 

and 

( ) ( ) ( )
22 0 ,

1

, , sinI n n
n

I t H s tω ω ω ϕ
∞

=

⎡ ⎤≈ Θ ⋅ ⋅ −⎢ ⎥⎣ ⎦
∑                           (16) 

The hoop stress from equation (14) becomes: 

( ) ( ) ( )0, , , sinr t H r t
θθ σσ ω ω ω ϕ≈ Θ ⋅ ⋅ −                                   (17) 

with ( , )H r
θσ

ω  is the magnitude for stress frequency response function. 

Figure 4 illustrates the comparison between the hoop stress from equation (17) with the 
complete analytical solution and FEA analysis from [15]. As can be seen from the comparison, 
it can be concluded that the magnitude of stress frequency response is reasonable described by 
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equation (17), in a conservative way. The magnitude of the stress frequency response has an 
interesting dependence on loading frequency across the wall thickness, as it is illustrated in 
Figure 5. Note that frequency responses for the temperature and those for the hoop stress have 
not the same dependence from frequency and positioning the thickness. Moreover, moving into 
the pipe wall, for each locations, the frequencies for which the maximum values of respective 
response functions are reached are not the same as well. Figure 6 displays the profiles of the 
function ( ),H r

θσ
ω , for several frequencies in the range 0.1 Hz to 1.0 Hz. This figure shows a 

complementary feature to those from Figure 5 and illustrates the sensitivity of this frequency 
response function to the loading frequency, across the wall-thickness. 
 

 
Fig. 4. Comparison between predictions for hoop stress: complete analytical solution, FEA, and by means 

of stress frequency response function (frequency of sinusoidal thermal loading f=0.3 Hz). 
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Fig. 5. Magnitude of the stress frequency response function versus loading 

frequency for various depths through the thickness. 
 
 
The Stress Intensity Factor Frequency Response  

Let assume that there is a shallow crack of infinite length on the inner surface and parallel to the 
tube axis. The approach to derive the stress intensity factors is based on the polynomial 
representation of stress components through the wall-thickness of the pipe [16]. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-250 
-200 
-150 
-100 
-50 

0 
50 

100 
150 
200 
250 

Normalized radial distance through thickness

H
oo

p 
st

re
ss

  
(M

P
a)
 

 

 analytical, 0.8 sec

analytical, 2.4 sec

0.8 sec, FEA

2.4 sec, FEA

0.8 sec, FRF

2.4 sec, FRF



Structural Reliability Approach in Thermal Fatigue Crack Growth by Stochastic Modeling 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Normalized radial distance through thickness

M
ag

ni
tu

de
 o

f H
oo

p 
st

re
ss

 fr
eq

ue
nc

y 
re

sp
on

se
 (M

P
a/

C
)

 

 
f=0.1Hz
f=0.3 Hz
f=0.5 Hz
f=0.8Hz
f=1.0Hz

 
Fig. 6. Magnitude of the stress frequency response function through 

the wall thickness for various loading frequency. 
 
To evaluate the Mode I stress intensity factor, KI, for surface crack under thermal stresses, the 
procedure from [16] was followed, which uses the following relation: 

2 3 4

0 0 1 1 2 2 3 3 4 4I
a a a a a aK G G G G G
l Q l l l l

π σ σ σ σ σ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

   (18) 

where G0 to G4 are the influence coefficients (or magnification factors) and σi (i=0,…,4) are the 
coefficients for polynomial stress distribution. In the case of a long axial crack and also fully 
circumferential crack on inner pipe surface the Q parameter is considered as Q=1. The 
calculation of the SIF from the surface temperature variation can be regarded as a frequency 

response calculation with absolute value (magnitude) ,K
aH
l
ω⎛ ⎞

⎜ ⎟
⎝ ⎠

. The methodology was 

derived elsewhere [4, 6], and the weight function method is the most used. The magnitude of 
frequency transfer function for SIF may be written in terms of the stress frequency response [4]. 
To do this, the function ( ),H r

θσ
ω  is written as through-thickness profile 

( ) ( ) ( ) ( ) ( )
2 3 4

0 1 2 3 4,x x x x xH h h h h h
l l l l lθσ
ω ω ω ω ω ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  .   (19) 

From the dependencies displayed in Figure 6, it seen that the fitting coefficients hj (j=0,…,4) 
depend on the loading frequency ω, (ω=2πf). The magnitude of SIF frequency response 
function (or amplitude of the frequency transfer function for SIF) is assumed to be given by 

, ,K K
a aH a G
l l
ω π ω⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                                 (20) 

with 

( )
4

0
,

i

K i i
i

a a aG h G
l l l
ω ω

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ .                                        (21) 

Figure 7 shows the dependence of magnitude of SIF frequency response function, ,K
aH
l
ω⎛ ⎞

⎜ ⎟
⎝ ⎠

 

on loading frequency for various crack depth. As crack is growing into the thickness, the 
magnitude response is higher. Note that for small crack depth the magnitude of SIF response is 
almost the same for whole of frequency range, and for deeper cracks the maximum of response 
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is reached for 0.2-0.3 Hz. For the reference geometry considered in the work [13], the frequency 
response function can be used to obtain the stress intensity factor, KI. Its dependence on loading 
frequency for various crack depth is given by (see fig. 8): 

0, , , sin( )K
a aK t a G t
l l
ω π ω ω φ⎛ ⎞ ⎛ ⎞= Θ ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.                            (22) 

The examination of this behavior of KI, which is calculated for the instant of time t=T/4 (with 
T= time period of loading), suggests a highest value for frequency f=0.3 Hz, which is in a good 
agreement with previous study [15]. 
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Fig. 7. The dependence of SIF frequency response magnitude as function 

on loading frequency (Hz) on crack depth 
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Fig. 8. Stress intensity factor (instant T/4) using SIF frequency 

response function versus crack depth. 
 
The analysis above has been performed by considering a sinusoidal thermal loading as surface 
temperature fluctuations. For mixing tees the surface temperature variation is a random process.  
The input of surface temperature fluctuations can always be characterized by its power spectral 
density (PSD), which is the Fourier transform of the autocorrelation function. This may be 
obtained from experimental measurements. Moreover, it is also necessary to postulate a 
probability distribution functional for temperature. This will be taken to be Gaussian, implying a 
Gaussian probability density function for temperature at any instant [6], which is completely 
described by its PSD. 
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The approach followed is to consider the temperature fluctuation and its spectrum as a Gaussian 
stationary narrow-band process. In this case, the magnitude of SIF frequency response 
function, ( ),K aH x ω , relates the PSD of SIF, ( ),K aS x ω , and PSD of surface temperature 

ST(ω), respectively, as 

( ) ( ) ( )2
, ,K a K a TS x H x Sω ω ω=                                                (23) 

with xa=a/l crack depth to thickness ratio. 

The mean square (variance) of the SIF is given by 

( ) ( )2 ,rms a K aK x S x dω ω
∞

−∞

= ∫   .                                             (24) 

Moreover, from practical point of view it is considered the one-sided PSD with frequency 
expressed in Hertz (cycles/second) 

( ) ( )4T TW f Sπ ω= ⋅                                                        (25) 

with WT(f) expressed in (° C)2/Hz, and 
2

f ω
π

=  in Hz and the PSD of SIF is given by 

( ) ( ) ( )2
, ,K a K a TW x f H x f W f=                                            (26) 

In the following we consider the one-sided PSD of temperature with ( ) 0 .fT TW W const= = , for 

a range of frequencies is considered [ ]1 2,f f f∈ , Figure 9. 
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Fig. 9. One-sided PSD for temperature fluctuations 

 
The frequency of peaks of any magnitude for KI, which is supposed to be a stationary narrow-
band Gaussian process with τ delay time is characterized by Rayleigh distribution: 

( ) ( ) ( )2 2

1, 0 exp
2I

I I
K a

rms a rms a

K Kf x
K x K x

τ
⎡ ⎤

= = −⎢ ⎥
⎣ ⎦

                               (27) 
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Thermal Fatigue Crack Growth Lifetime Estimate 

The present analysis assumes the Paris law for crack growth per cycle as 

( )nda C K
dN

= ⋅ Δ                                                             (28) 

where N is the number of maxima and ΔK is the range between the maximum and next 
minimum; here the range between maximum and next zero is considered: 

K KΔ = .                                                                   (29) 

The stochastic model for thermal fatigue crack growth developed includes a first part 
incorporating stochastic loads (derived into stochastic behavior of K) and a second one, that 
deals with Monte Carlo simulation, to accommodate statistical characteristics of crack growth 
under constant amplitude. 

The time-dependent fluctuation of the temperature is correlated with the time dependent 
fluctuation of crack growth from Paris law. Because the number of loading cycles is a discrete 
variable with respect to time variable, the number of loading cycles is modified into a 
continuous variable by introducing an average cyclic rate. So, when time-dependent stochastic 
analysis is conducted, the crack growth rate of a random flaw size, a, should be written in the 
following form: 

p
da da dN da
dt dN dt dN

ν= =                                                          (30) 

where νp is the mean rate of maxima, that is constant for a stationary stochastic Gaussian  
process. For this kind of process, νp may be identified with the expected rate of up-crossing rate 
(equal to the expected rate of peak crossing) [17] 

( )
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2

1

2

1

2
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,

,
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f

p K K p f

K a
f

f W x f df

N N
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ν = = =
∫

∫

& & .                                        (31) 

For the one-sided PSD case, as it is displayed in Figure 9, this is equivalent to 
 

( )
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f

p f

K a
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f H x f df

H x f df

ν =
∫

∫
.                                            (32) 

If a linear summation of damage, ignoring the effect of positive minima [6], is assumed, the 
expected rate of crack growth in respect to cycles is 

( ) ( )
0

, 0
I

n
K a

daE C K f x dK
dN

τ
∞⎡ ⎤ = ⋅ =⎢ ⎥⎣ ⎦ ∫  .                              (33) 

By re-arranging the equation (33) and considering the expression of the nth moment of the 
Rayleigh distribution, the final form of stochastic crack growth rate is given by: 
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∫

 .                 (34) 

where Γ is the Gamma function. This equation must be numerically integrated to obtain the 
normalized crack length, xa, as a function of time, when C and n are given deterministically. 

Application 

A prospective study for the probabilistic approach of thermal fatigue in mixing tees by means of 
limit state function and Monte Carlo simulation, based on sinusoidal approach, has been done in 
a previous work [18]. In the present work the limit state function will be based on equation (34) 
together with a probabilistic input to account for the variability in the initial crack depth and in 
C scaling parameter. 

A crack penetration depth of 80% of the wall thickness has been considered as the limit state of 
the thermal fatigue damage failure. To combine the stochastic behavior of K with statistical 
characteristics of crack growth under constant amplitude (C and n Paris law parameters), and 
also with initial crack depth distribution, the limit state function is defined in the following form: 

( ) 1 stoch
ref

ref

tg t
t

= −                                                            (35) 

where: tref  is the reference time period for the thermal fatigue crack growth under thermal 
spectrum, tstoch is the estimated values of lifetime for stochastic crack growth derived from 
equation (34). 

During the Monte Carlo simulation (MCS), the trials which satisfy the condition 

( ) 0refg t ≤                                                                  (36) 

are accounted as nfail  and the probability of failure for a certain period of time (tref) is given by 

fail
f

trials

n
P

N
=                                                                    (37) 

where Ntrials is the total number of trials of the MC simulation. The initial crack size distribution 
has a very strong influence on the deterministic and also probabilistic assessment of the 
component lifetime. 

The present approach considers only axial long cracks at inner surface, characterized by an 
exponential distribution for the initial crack depth [18]. Slopes (n) and intercepts (C) for all 
fatigue data represented by equation (28) are usually highly correlated. Ignoring this correlation 
can give misleading results in the simulation. An alternate method to account for this correlation 
is to use a constant slope and put all of variability into the intercept [19]. For a constant slope, 
the variability in fatigue lives will be directly related to the variability in the material constant C, 
usually by a lognormal distribution [19]. The geometry and parameters from Civaux case will 
be considered during this application [13, 20]. For a thermal spectrum assumed to be stationary 
Gaussian stochastic process we use the one-sided temperature PSD (fig. 9): 
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                              (38) 

By re-conversion using RSA method (Random Spectral Amplitudes) [21], we extract a sample 
function for temperature that is displayed in Figure 10, with an imposed non-zero mean value. 
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Fig. 10 Sample function of the temperature variation from PSD of a stationary Gaussian 

narrow-band process (PSD=500 C2/Hz, f =0.1-1.0 Hz, with non-zero mean value) 
 
The Monte Carlo analyses were performed by implementing in the MATLAB environment 
specific scripts and described function, using a number of trials of 104-105 order. 

The results are displayed in Figure 11. The probabilities of failure, defined by limit state 
function from equation (35), are given as function of the reference time period. The same graph 
displays the lifetime for crack penetration through the wall as it has been reported for Civaux 
case [13]. One can see that the time of 1500 hours, corresponds to a probability of failure of 
about 80%. 
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Fig. 11. Probabilities of failure: the stochastic modeling results of fatigue crack  

growth coupled with probabilistic input for Monte Carlo simulation 
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Conclusions 

The study proposes a stochastic model focused only to assess thermal fatigue crack growth in 
mixing tees of NPP with the temperature spectrum assumed to be a Gaussian stationary narrow-
band stochastic process. The stochastic fatigue crack growth model used includes a main part 
for incorporating the randomness of the in-service thermal loads, and a second one which 
includes the description of the statistical characteristics for the crack growth under constant 
amplitude loadings. Based on the analytical solution of the temperature response (Hankel 
transform) within the SIN-methodology developed in previous work, a temperature frequency 
response function through the pipe thickness is developed. By considering the analytical 
solution for the thermal stresses developed in previous works, a stress frequency response 
function for the thermal hoop stress is derived and a SIF frequency response magnitude is 
obtained. With hypothesis of one-sided PSD model for the temperature fluctuation, the PSD of 
SIF is obtained by means of FRF methodology and, consequently, the expected value of crack 
growth rate in HCF domain can be assessed using the Rayleigh distribution moments. The 
variability of the Paris law parameters and of the initial crack size distribution is accounted for 
within the probabilistic approach and the probabilities of failure are obtained by MCS. The 
present methodology based on the stochastic modeling of thermal fatigue crack growth can be 
used to analyze and improve the screening criteria proposed to avoid cracking damage in 
nuclear piping, especially in tee connection where turbulent mixing of flows with different 
temperature can occur. 
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Abordarea fiabilităţii structurale a creşterii fisurii 
de oboseală termică prin modelare stohastică 

Rezumat 

Problematica oboselii termice este relevantă pentru tubulatura centralelor nucleare unde se realizează 
amestecul a două lichide aflate iniţial la temperaturi diferite şi unde se produc fluctuaţii rapide de 
temperatură ale fluidului de amestec. Evaluarea creşterii fisurilor datorită fluctuaţiei sarcinilor termice 
in aceste zone, prezintă dificultăţi serioase de abordare datorită imposibilităţii determinării spectrului 
real de frecvenţe. In vederea abordării stohastice a propagării unei fisuri de oboseală termică, lucrarea 
propune o funcţie de răspuns in frecvenţă pentru temperatură. Ulterior sunt obţinute soluţiile distribuţiei 
de tensiuni elastice şi amplitudinea funcţiei corespunzătoare de răspuns in frecvenţă. Conexiunea dintre 
densitatea spectrală de putere a factorului KI şi cea a temperaturii este  realizată prin intermediul 
modulului funcţiei de răspuns in frecvenţă pentru factorul KI. Spectrul de frecventă a maximelor pentru  
KI se presupune că face parte dintr-un proces staţionar Gaussian de banda îngustă. Probabilităţile de 
rupere sunt estimate pe baza unei funcţii corespunzătoare de stare limită. 


