Analysis of the Cracks in the Chassis and ElasticPlastic Behavior of the Structure for Cranes with Telescopic Arm

Laurențiu Sârbu
Universitatea Tehnica de Constructii Bucuresti - Facultatea de Utilaj Tehnologic
e-mail: laurentiusarbu_utcb@yahoo.com

Abstract

It was determined that at the mobile cranes used in constructions on any type of terrain (for instance, at Tadano Faun ATF 30-21) there are some cracks in the structure of the (4x4x4) - type chassis with motor and driving wheels. The way they appear and the crack evolution in time are not know but it is quite sure they were done by the bad roads of the sites where the crane moves as well as by operating it by blocking the suspension and the automatic control system of stress limiter which increases the induced efforts and stress value in the arm and chassis structure. Further, there are remarks on the cracking mechanics and crack dynamics, and. some conclusions are drawn regarding the case shown and the way it must be mended.

Key words: cracks in the chassis, elastic-plastic behavior of the crane structure, scheme of lifting the load on the ground.

Model description

The metallic construction of the crane with telescopic arm consists of three main parts: the telescopic arm, the revolving platform, and the elastic chassis with pressing parts.
The telescopic arm is a caisson construction consisting in many sections being elastic on the support of the tilting cylinder and fixed at one end by the revolving platform by a joint. On the concentrated mass of the arm a force of inertia $m_{1} \ddot{y}_{1}$ and a moment of inertia $y_{1} \ddot{\mu}_{1}$ act. The reduced load at the arm peak is $\mathrm{Q}=\mathrm{Q}_{\mathrm{n}}$ and the arm weight is $\mathrm{m}_{1} \mathrm{~g} \sim \mathrm{G}_{1 \mathrm{n}}$.
From the arm equilibrium it results the reactions of the fixing joint $X_{1} Y_{1}$ and the tilting force in the cylinder F_{1}. The arm rotation on the vertical under load is φ_{1}.
The revolving platform. The revolving forces in the arm fixing joint $\mathrm{X}_{1} \mathrm{Y}_{1}$, tilting cylinder force F_{1}, counterweight G_{cg} and platform weight G_{p}. Vertically act on the platform structure. Inside the platform assembly load centre the force of inertia $m_{z} \ddot{y}_{2}$ and the moment of inertia $y_{z} \ddot{\varphi}_{2}$ act as a result of the construction deformation under the lifting maximum load action as well as the arm weight, given by the rotation φ_{2}.

The platform structure supporting is done by the support (considering it to be elastic) when the force F_{2} and the joint A_{2}, act together with the reactions X_{z}, Y_{2} and cylindrical rigidity under bending K_{2}.

Crane chassis. The superstructure loadings are sent by the rotating coupling of the platform made of the actions $\mathrm{F}_{2}, \mathrm{X}_{2}, \mathrm{Y}_{2}$ şi K_{2}.

The chassis is considered to be an elastic structure of two masses m_{3} and m_{4}, linked in the middle by a joint with yielding elastic joint where force F_{3} and two concentrated moment of the cylindrical rigidity when bending K_{2}. act.

Additionally, the elastic force F_{2} acts on mass m_{4}.
The ends of the two masses of the elastic chassis are coupled with the pressing system by joints $\mathrm{A}_{3}, \mathrm{~A}_{4}$ and cylindrical rigidities at bending $\mathrm{K}_{3}, \mathrm{~K}_{4}$.

The loads are given by the weight forces as well as the structure component linking forces G_{3}, $\mathrm{G}_{4}, \mathrm{~F}_{2}, \mathrm{X}_{2}, \mathrm{Y}_{2}$ and K_{2}.

When the elastic structure with φ_{3}, φ_{4} is rotated inside the mass load centre m_{3} and m_{4} of the chassis the forces of inertia $m_{3} \ddot{y}_{3}, m_{4} \ddot{y}_{4}$ together with the moments of inertia $y_{3} \ddot{\varphi}_{3}, y_{4} \ddot{\varphi}_{4}$ act, taking into account points A_{3} and A_{4}.

Fig. 1
b.

Fig.1,a and b. Calculation scheme of the crane structure.

The scheme of the elastic construction used for the chassis (Fig.1, a and b) intends to emphasize the excessive deformations that may appear when working and produce cracks in the chassis structure (Fig. 3 and 4). These appeared on the back section, bench the revolving crown when is coupled to the pressing parts boxes. These crack appear at the fixing welding of the section end gusset plates and at the tack welding of the front gusset plates respectively (Fig.2).

Similar cracks appear at the top part of the front caisson base core of the chassis and gusset plates (fig.5) [4].

Figs. 2, 3, 4 and 5. Cracks in the chassis.
Figure 2 shows the right back gusset on which one can see the real cracks in the weldings that set the chassis on the back setting casing. Figure 5 shows the crack in the gusset welding set the left box spare on the front crane casing.
On the top, between the box spare housings a square plate is welded; it is cut at the middle which links the setting casing with the rotation crown support (see photo in Fig 3). At this plate there are now a series of cracks that are arranged along the longitudinal axis and crosswise in the 4 points along the plate diagonals.

It is taken into consideration that actions $\mathrm{F}_{2}, \mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{~K}_{2}$ are sent to the chassis and act together with the chassis elasticity that make the joint appear inside the chassis structure. The proposed model used the structure stress of the working maximum load action increased by 25%. If it is considered the process of the load from the support with a loosen lifting cable it must be taken into account the maximum effort $\mathrm{F}_{2,3}$ appeared in cable during the lifting [2].

The equation system show in the revolving of the metallic construction of the telescopic arm crane as follows:

$$
\begin{align*}
& -\frac{4}{3} m_{1} a_{1}^{2} \ddot{\varphi}_{1}-\beta_{1} b_{1}^{2} \cos \alpha \cdot \varphi_{1}+Q_{n} l_{1}+G_{1 n} a_{1}=0 \\
& -\frac{4}{3} m_{2} a_{2}^{2} \ddot{\varphi}_{2}+\beta_{1} b_{1} e_{2} \cos \alpha \cdot \varphi_{2}+\beta_{2} f_{2}^{2} \cdot \varphi_{2}-X_{1} \cdot l_{2}-y_{1} c_{2}-G_{c} \cdot d_{2}-G_{2 u} \cdot a_{2}=0 \\
& -\frac{4}{3} m_{3} a_{3}^{2} \ddot{\varphi}_{3}-\beta_{3} l_{3}^{2} \cdot \varphi_{3}+K_{3} \varphi_{3}-K_{2} \varphi_{2}-Y_{2} l_{4}=0 \\
& -\frac{4}{3} m_{4} a_{4}^{2} \ddot{\varphi}_{4}+\beta_{2} f_{2}\left(l_{4}-f_{2}\right) \varphi_{2}+K_{2} \varphi_{2}-K_{4} \varphi_{4}-Y_{2} l_{4}=0 \tag{1}
\end{align*}
$$

where: $\varphi_{3} l_{3}=\varphi_{4} l_{4}$

Solving the equation system $\{1\}$ against the rotation φ_{3} an unhomogeneous differential equation results:

$$
\begin{align*}
& -\frac{4}{3}\left(m_{4} a_{4}^{2}-m_{3} a_{3}^{2}\right) \dddot{\varphi}_{3}-\beta_{3} l_{3} l_{4} \ddot{\varphi}_{3}=-\frac{4}{3} m_{2} a_{2}^{2}\left(1-\frac{l_{4}}{f_{2}}\right)\left(1+\frac{3 b_{1}}{4 a_{1}}\right) \dddot{\varphi}_{2}- \\
& -\frac{3 b_{1}\left(1-\frac{l_{4}}{f_{2}}\right)}{4 a_{1}} \beta_{2} f_{2}^{2} \ddot{\varphi}_{2}+\frac{3 \beta_{1} b_{1}^{2} e_{2}}{4 a_{1}}\left(1-\frac{l_{4}}{f_{2}}\right) \ddot{\varphi}_{1}+\frac{3 \beta_{1}^{2} b_{1}^{3} e_{2}}{4 m_{1} a_{1}^{2}}\left(1-\frac{l_{4}}{f_{2}}\right) \cos \alpha \cdot \varphi_{1}- \tag{2}\\
& -\frac{3 \beta_{1} b_{1} e_{2}}{4 m_{1} a_{1}^{2}}\left[Q_{n} l_{1}+G_{n 1} a_{1}\right] \cos \alpha=0
\end{align*}
$$

The homogenous equation solution has the formula $\varphi_{3}=e^{k \bar{t}}$, resulting:

$$
\begin{equation*}
\frac{4}{3}\left(m_{4} a_{4}^{2}-m_{3} a_{3}^{2}\right) \bar{k}^{4}-\beta_{3} l_{3} l_{4} \bar{k}^{2}=0 \tag{3}
\end{equation*}
$$

noting $\bar{k}^{2}=u$, an incomplete equation results:

$$
\frac{4}{3}\left(m_{4} a_{4}^{2}-m_{3} a_{3}^{2}\right) u^{2}-\beta_{3} l_{3} l_{4} u=0
$$

with the roots $\mathrm{u}_{1}=0 ; \quad u_{2}=\frac{3 \beta_{3} l_{3} l_{4}}{4\left(m_{4} a_{4}^{2}-m_{3} a_{3}^{2}\right)}$
For the right number the following general solutions are taken $\varphi_{2}=e^{\bar{k} t}$ şi $\varphi_{1}=e^{\overline{k t}}$.
Resulting in φ_{2} for the differential equation:

$$
-\frac{4}{3} m_{2} a_{2}^{2}\left(1+\frac{3 b_{1}}{4 a_{1}}\right) \bar{k}^{4}-\frac{3 b_{1} \beta_{2} f_{2}^{2}}{4 a_{1}} R^{2}=0
$$

where $\bar{k}^{2}=0$, so:

$$
-\frac{4}{3} m_{2} a_{2}^{2}\left(1+\frac{3 b_{1}}{4 a_{1}}\right) u^{2}-\frac{3}{4} \frac{b_{1}}{a_{1}} \cdot \beta_{2} f_{2}^{2} u=0
$$

with the roots $\mathrm{u}_{1}{ }^{(2)}=0$;

$$
\begin{equation*}
u_{2}^{(2)}=-\frac{9 \beta_{2} f_{2}^{2} b_{1}}{16 m_{2} a_{1} a_{2}^{2}\left(1+\frac{3 b_{1}}{4 a_{1}}\right)} \tag{4}
\end{equation*}
$$

For the right number differentia equation in φ_{1} a characteristic equation results:

$$
\frac{3 \beta_{1} b_{1}^{2} e_{2}}{4 a_{1}} \bar{k}^{2}-3 \frac{\beta_{1}^{2} b_{1}^{3} e^{2}}{4 m_{1} a_{1}^{2}} \cos \alpha=0 \text { This is an incomplete equation: } \mathrm{ax}^{2}+\mathrm{c}
$$

$=0$, with the roots:

$$
\begin{equation*}
k_{1,2}^{(1)}= \pm \sqrt{\frac{\beta_{1} b_{1} \cos \alpha}{m_{1} a_{1}}} \tag{5}
\end{equation*}
$$

The particular solution given by the arm rotation is as follows:

$$
\begin{equation*}
C_{o}=\frac{Q_{n} l_{1}+G_{\mathrm{ln}} a_{1}}{\beta_{1} b_{1}^{2}\left(1-\frac{l_{4}}{f_{2}}\right)} \tag{6}
\end{equation*}
$$

The general solution of the unhomogenous differential equation in φ_{3} results:

$$
\begin{equation*}
\varphi_{3}=A_{1} \cos U_{3} T-A_{2} \cos u_{2} t+A_{3} \cos k_{1} t-B_{3} \sin k_{2} t+C_{o} \tag{7}
\end{equation*}
$$

having the initial conditions:

$$
\begin{equation*}
\varphi_{3}(0)=\varphi_{1}(0)=C_{o} ; \quad \dot{\varphi}_{3}=0 ; \quad \ddot{\varphi}_{3}=\frac{\sqrt{C I}}{A} ; \quad \dddot{\varphi}_{3}=0 ; \quad \dddot{\varphi}_{3}=0 ; \tag{8}
\end{equation*}
$$

where:

$$
\begin{equation*}
\sqrt{\frac{C I}{A}=\sqrt{\frac{9 \beta_{1} b_{1} e_{2}\left(Q_{n} l_{1}+G_{1 n} a_{1}\right) \cos \alpha}{m_{1} a_{1}^{2}\left(m_{4} a_{4}^{2}-m_{3} a_{3}^{2}\right)}}} \tag{9}
\end{equation*}
$$

Depending on sloping angle of the tilting cylinder one may calculate $Q_{n}, G_{1 n}$ an the lengthes 1_{1}, a_{1} are modified if the arm is telescoped. The load Q_{n} modifies according to load diagram.

The algebric equation system for calculating the integrating constants $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ is as follows:

$$
\left\{\begin{array}{l}
\left\{A_{1}-A_{2}+A_{3}+C_{o}=0\right. \tag{10}\\
-U_{3}^{2} A_{1}+U_{2}^{2} A_{2}-K_{1}^{2} A_{3}=\sqrt{\frac{C I}{A}} \\
U_{3}^{4} A_{1}+U_{2}^{4} A_{2}+K_{1}^{4} A_{3}=0
\end{array}\right.
$$

It results from calculus:

$$
\begin{align*}
A_{1} & =\frac{C_{o} U_{3}^{2}\left[U_{3}^{2}\left(U_{2}^{2}-U_{3}^{2}\right)+\left(U_{2}^{4}-U_{3}^{4}\right)\right]-\sqrt{\frac{C I}{4}\left(U_{2}^{4}+U_{3}^{4}\right)}}{\left(U_{2}^{4}+U_{3}^{4}\right)-\left(U_{3}^{2}+K_{1}^{2}\right)\left(U_{2}^{2}-U_{3}^{2}\right)} \cdot \frac{U_{2}^{2}-2 U_{3}^{2}+K_{1}^{2}}{\left(U_{3}^{2}-K_{1}^{2}\right)\left(U_{2}^{2}-U_{3}^{2}\right)} \\
A_{2} & =\frac{\sqrt{\frac{C I}{A}}-U_{3}^{2} C_{o}}{\left(U_{2}^{2}-U_{3}^{2}\right)}-\frac{C_{o} U_{3}^{2}\left[U_{3}^{2}\left(U_{2}^{2}-U_{3}^{2}\right)+\left(U_{2}^{4}-U_{3}^{4}\right)\right]-\sqrt{\frac{C I}{A}}\left(U_{2}^{4}+U_{3}^{4}\right)}{\left(U_{2}^{2}-U_{3}^{2}\right)\left[\left(U_{2}^{4}+U_{3}^{4}\right)-\left(U_{3}^{2}+K_{1}^{2}\right)\left(U_{2}^{2}+U_{3}^{2}\right)\right]} \tag{11}\\
A_{3} & =\frac{C_{o} U_{3}^{2}\left[U_{3}^{2}\left(U_{2}^{2}-U_{3}^{2}\right)+\left(U_{2}^{4}+U_{3}^{4}\right)\right]-\sqrt{\frac{C I}{A}}\left(U_{2}^{4}+U_{3}^{4}\right)}{\left(U_{3}^{2}-K_{1}^{2}\right)\left[\left(U_{2}^{4}+U_{3}^{4}\right)-\left(U_{3}^{2}+K_{1}^{2}\right)\left(U_{2}^{2}-U_{3}^{2}\right)\right]}
\end{align*}
$$

The coefficients (11) have been computed from static rotation conditions $\varphi_{1}(0)=C_{0}$ of the loaded arm and the acceleration value $\ddot{\varphi}_{3}(0)=\sqrt{\frac{C I}{A}}$.
Solving the equation system (1) depending on rotation φ_{4}, it results:

$$
\begin{align*}
& \dddot{\varphi}_{4}\left(\frac{4}{3} m_{4}-\frac{a_{4}^{2}}{l_{4}}+\frac{4}{3} m_{3} \frac{a_{3}^{2} l_{4}}{l_{3}^{2}}\right)-\ddot{\varphi}_{4}\left(\frac{K_{3} l_{4}^{2}+K_{4} l_{3}^{2}}{l_{3}^{2} l_{4}}-\beta_{3} l_{4}\right)+\left[\frac{\left(l_{3}+l_{4}\right) K_{2}}{l_{3} l_{4}}+\frac{\beta_{2} f_{2}\left(l_{4}-f_{2}\right)}{l_{4}}\right] \cdot \frac{\beta_{1}^{2} b_{1}^{3} e_{2} \cos \alpha}{\frac{4}{3} m_{1} a_{1}^{2} \cdot \beta_{2} f_{2}^{2}} \varphi_{1-} \\
& -\left[\frac{\left(l_{3}+l_{4}\right) K_{2}}{l_{3} l_{4}}+\frac{\beta_{2} f_{2}\left(l_{4}-f_{2}\right)}{l_{4}}\right] \cdot \frac{\frac{4}{3} m_{2} a_{2}^{2}}{\beta_{2} f_{2}^{2}} \dddot{\varphi_{2}}-\left[\frac{\left(l_{3}+l_{4}\right) K_{2}}{l_{3} l_{4}}+\frac{\beta_{2} f_{2}\left(l_{4}-f_{2}\right)}{l_{4}}\right] \cdot \frac{\beta_{1} \cdot b_{1} e_{2}}{\beta_{2} f_{2}^{2}} \cdot \frac{Q_{n} l_{1}+G_{1 n} a_{1}}{\frac{4}{3} m_{1} a_{1}^{2}}=0 \tag{12}
\end{align*}
$$

The general homogenous equation solution (12) in φ_{4} has the form $\varphi_{4}=\mathrm{e}^{\mathrm{kt}}$
We have:

$$
\frac{4}{3}\left(m_{4} \frac{a_{4}^{2}}{e_{4}}+m_{3} \frac{a_{3}^{2} l_{4}}{l_{3}^{2}}\right) \bar{K}^{4}-\left(\frac{K_{3} l_{4}^{2}+K_{4} l_{3}^{2}}{l_{3}^{2} l_{4}}-\beta_{3} l_{4}\right) \bar{K}^{2}=0
$$

$$
\bar{K}^{2}=U, \text { it results: }
$$

$$
\frac{4}{3}\left(m_{4} \frac{a_{4}^{2}}{l_{4}}+m_{3} \frac{m_{3}^{2} l_{4}}{l_{3}^{2}}\right) U^{2}-\left(\frac{K_{3} l_{4}^{2}+K_{4} l_{3}^{2}}{l_{3}^{2} l_{4}}-\beta_{3} l_{4}\right) U=0
$$

with the roots: $\mathrm{U}_{1}{ }^{(4)}=0$;

$$
\begin{equation*}
U_{2}^{(4)}=\frac{\frac{4}{3}\left(m_{4} \frac{a_{4}^{2}}{l_{4}}+m_{3} \frac{a_{3}^{2} l_{4}}{l_{3}^{2}}\right)}{\frac{K_{3} l_{4}^{2}+K_{4} l_{3}^{2}}{l_{3}^{2} l_{4}}-\beta_{4} l_{4}} \tag{13}
\end{equation*}
$$

For the differential equations in the right number of the equation (12), the following solutions are choosen:

$$
\begin{equation*}
K_{1,2}^{(2)}= \pm \sqrt{-\frac{\beta_{2} f_{2}^{2}}{\frac{4}{3} m_{2} a_{2}^{2}}} ;(14) \quad K_{3,4}^{(2)}= \pm \sqrt{\frac{\beta_{1} b_{1}^{2} \cos \alpha}{\frac{4}{3} m_{1} a_{1}^{2}}} ; \tag{15}
\end{equation*}
$$

It results the general solution form of the rotation φ_{4} :

$$
\begin{equation*}
\varphi_{4}=A_{1} \cos U_{4} t+C_{1}\left[A_{2} \cos K_{1}^{(2)} t-B_{2} \sin K_{2}^{(2)} t\right]+C_{2}\left[A_{3} \cos K_{3}^{(1)} t-B_{3} \sin K_{4}^{(1)} t\right]+C_{o}^{\prime} \tag{16}
\end{equation*}
$$

where:

$$
\begin{align*}
& C_{1}=\left[\frac{\left(l_{4}+l_{3}\right) K_{2}}{l_{3} l_{4}}+\frac{\beta_{2} f_{2}\left(l_{4}-f_{2}\right)}{l_{4}}\right] \cdot \frac{\beta_{2} f_{2}^{2}}{\frac{4}{3} m_{2} a_{2}^{2}} ; \tag{17}\\
& C_{2}=-\left[\frac{\left(l_{3}+l_{4}\right) K_{2}}{l_{3} l_{4}}+\frac{\beta_{2} f_{2}\left(l_{4}-f_{2}\right)}{l_{4}}\right] \frac{\beta_{1}^{2} b_{1}^{3} e_{2} \cos \alpha}{\frac{4}{3} m_{1} a_{1}^{2} \beta_{2} f_{2}^{2}} ; \tag{18}
\end{align*}
$$

$$
\begin{gather*}
\frac{C_{3}}{A}=\frac{\left[\frac{\left(l_{3}+l_{4}\right) K_{2}}{l_{3} l_{4}}+\frac{\beta_{2} f_{2}\left(l_{4}-f_{2}\right)}{l_{4}}\right] \cdot \frac{\beta_{1} b_{1} e_{2}}{\beta_{2} f_{2}^{2}} \cdot \frac{a_{n} e_{1}+G_{m} a_{1}}{\frac{4}{3} m_{1} a_{1}^{2}}}{\frac{4}{3}\left(m_{4} \frac{a_{4}^{2}}{l_{4}}+m_{3} \frac{a_{3}^{2}}{l_{3}}\right)} \tag{19}\\
C_{o}^{\prime}=\frac{Q_{n} l_{1}+G_{m} a_{1}}{\beta_{1} b_{1}^{2} \cos \alpha} \tag{20}
\end{gather*}
$$

The initial conditions are set:

$$
\begin{equation*}
\varphi_{4}(0)=\varphi_{1}(0)=C_{o}^{\prime} ; \ddot{\varphi}_{4}(0)=0 ; \ddot{\varphi}_{4}(0)=\sqrt{\frac{C_{3}}{A}} ; \dddot{\varphi}_{4}(0)=0 ; \dddot{\varphi}_{4}(0)=0 . \tag{21}
\end{equation*}
$$

where the relations (19) and (20) are used to calculate C_{0}^{\prime} and $\sqrt{\frac{C_{3}}{A}}$.
The algebric equation system for calculating the integrating constants $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ is as follows:

$$
\left\{\begin{array}{l}
A_{1}^{\prime}+C_{1} A_{2}+C_{2} A_{3}^{\prime}+C_{0}^{\prime}=0 \tag{22}\\
-A_{1}^{\prime} U_{2}^{2}-C_{1} K_{1}^{2} A_{2}^{\prime}-C_{2} K_{3}^{2} A_{3}^{\prime}=\sqrt{\frac{C_{3}}{A}} \\
-A_{1}^{\prime} U_{2}^{4}+C_{1} A_{2}^{\prime} K_{1}^{4}+C_{2} A_{3}^{\prime} K_{3}^{4}=0
\end{array}\right.
$$

It results:

$$
\begin{align*}
A_{1}^{\prime} & =-\frac{1}{C_{1}}\left\{\begin{array}{l}
\frac{\sqrt{\frac{C_{3}}{A}} U_{2}^{4}}{K_{1}^{2}\left(K_{1}^{2}-U_{2}^{2}\right)}-\left[\frac{\sqrt{\frac{C_{3}}{A}}-U_{2}^{2} C_{0}^{\prime}}{U_{2}^{2}+K_{1}^{2}}-\frac{\sqrt{\frac{C_{3}}{A}} U_{2}^{4}}{K_{1}^{2}\left(K_{1}^{2}-U_{2}^{2}\right)}\right] \cdot \frac{1}{1-\frac{U_{2}^{2}-K_{3}^{2}}{U_{2}^{2}+K_{1}^{2}} \cdot \frac{K_{1}^{2}-U_{2}^{4}}{K_{3}^{2}\left(K_{3}^{2}+U_{2}^{4}\right)}}+ \\
+\frac{1}{1-\frac{K_{3}^{2}\left(K_{3}^{2}+U_{2}^{4}\right)}{K_{1}^{2}-U_{2}^{4}} \cdot \frac{U_{2}^{2}-K_{3}^{2}}{U_{2}^{2}+K_{1}^{2}}}
\end{array}\right\} \tag{23}\\
A_{2}^{\prime} & =\frac{1}{C_{1} K_{1}^{2}}\left\{\frac{\sqrt{\frac{C_{3}}{A}} U_{2}^{4}}{K_{1}^{2}-U_{2}^{4}}-\frac{C_{2}\left[\frac{\sqrt{\frac{C_{3}}{A}}-U_{2}^{2} C_{0}^{\prime}}{U_{2}^{2}+K_{1}^{2}}-\frac{\sqrt{\frac{C_{3}}{A}} U_{2}^{4}}{K_{1}^{2}\left(K_{1}^{2}-U_{2}^{4}\right)}\right]}{1-\frac{U_{2}^{2}-K_{3}^{2}}{U_{2}^{2}+K_{1}^{2}} \cdot \frac{K_{1}^{2}-U_{2}^{4}}{K_{3}^{2}\left(K_{3}^{2}+U_{2}^{2}\right)}}\right\}
\end{align*}
$$

$$
A_{3}^{\prime}=\frac{\sqrt{\frac{C_{3}}{A}}-U_{2}^{2} C_{0}^{\prime}}{U_{2}^{2}+K_{1}^{2}}-\frac{\sqrt{\frac{C_{3}}{A}} U_{2}^{4}}{K_{1}^{2}\left(K_{1}^{2}-U_{2}^{4}\right)} C_{2}\left[\frac{K_{3}^{2}\left(K_{3}^{2}+U_{2}^{4}\right)}{K_{1}^{2}-U_{2}^{4}}-\frac{U_{2}^{2}-K_{3}^{2}}{U_{2}^{2}+K_{1}^{2}}\right]
$$

Also, the coefficients $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ where calculated using the static rotation condition $\varphi_{1}(0)=C_{0}^{\prime}$ of the loaded arm and the value of the construction rotating acceleration $\ddot{\varphi}_{4}(0)=\sqrt{\frac{C_{3}}{A}}$. The particular solutions of the two rotation differential equations in φ_{3}, φ_{4} given by the relation $(6,20)$; as well as the acceleration expressions $\sqrt{\frac{C_{I}}{A}}$ and $\sqrt{\frac{C_{3}}{A}}$ given by the relation (9) and (18) contain the lifting load Q .

To correctly represent the rotations φ_{3}, φ_{4} of the chassis structure when lifting the load it will be taken into account the lifting process of the load on the ground when the cables of the lifting tackle are loosen.

The scheme of lifting the load on the ground shown in fig.6, together with the calculus scheme of the telescopic arm crane construction fig.1, shows the way the transit regime calculus scheme modifies to the lifting mechanism represented by a sustem of two masses [2].

In fig. $6, a$ the link between the two masses (m_{1} lifting mechanism mass reduced at hois and $m_{2}-$ lifting load mass), is characterized by the play Δ.

In fig 6, a the mass m_{1}^{1} moves with a constant acceleration under a constant traction force of the hoist P.

Fig. 6. Scheme of lifting the load on the ground [2].
Duration of the first stage:

$$
\begin{equation*}
t_{1}=\sqrt{\frac{2 m_{1}^{\prime} \cdot \Delta}{P}} \tag{24}
\end{equation*}
$$

and the speed at its end (the begining of the second stage) will be:

$$
\begin{equation*}
\dot{X}_{11} f=\dot{X}_{22} 0=\sqrt{\frac{2 \cdot \Delta \cdot P}{m_{1}^{\prime}}} \tag{25}
\end{equation*}
$$

In the second stage the tension F_{2} (fig. $6, \mathrm{~b}$) appear in the elastic cable, now being smaller than the load Q coresponding the mass m_{2}, as the last one is stil non-operative.
The movement differential equation is as follows:

$$
\begin{equation*}
m_{1}^{\prime} \ddot{x}_{12}=P-F_{2}^{\prime} \tag{26}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathrm{F}_{2}^{\prime}=\mathrm{k} \cdot \mathrm{x}_{12} \tag{27}\\
& \mathrm{k} \text { is the cable elastic constant. }
\end{align*}
$$

From the relation (26) it is obtained the effort law in the lifting cable.

$$
\begin{equation*}
F_{2}^{\prime}=A_{2} \cos \sqrt{\frac{k}{m_{1}^{\prime}}}+B_{2} \sin \sqrt{\frac{k}{m_{1}^{\prime}}} t+P \tag{28}
\end{equation*}
$$

where the integrating constant are:

$$
\begin{equation*}
A_{2}=-P, B_{2}=\sqrt{2 P k \Delta} \tag{29}
\end{equation*}
$$

The duration of the second stage is obtained from the time necessary to increase the tension in cable F_{2}^{\prime} from 0 to Q. The expression of t_{2} is:

$$
\begin{equation*}
t_{2}=\sqrt{\frac{m_{1}}{k}}\left[\arcsin \frac{Q-P}{\sqrt{P(P+2 k \Delta)}}+\operatorname{arctg} \sqrt{\frac{P}{2 k \Delta}}\right] \tag{30}
\end{equation*}
$$

In the third stage the mass m_{2} is moved too (fig. $6, \mathrm{c}$). The movement differential equations have the following form [2]:

$$
\begin{equation*}
m_{1}^{\prime} \ddot{x}_{13}=P-F_{3}^{\prime} ; \quad \quad m_{2}^{\prime} \ddot{x}_{23}=F_{2}^{\prime}-Q \tag{31}
\end{equation*}
$$

where:

$$
\begin{equation*}
F_{2}^{\prime}=Q+k\left(x_{13}-x_{23}\right) \tag{32}
\end{equation*}
$$

or:

$$
\begin{equation*}
F_{3}^{\prime}=A_{3} \cos \sqrt{\frac{k\left(m_{1}^{\prime}+m_{2}^{\prime}\right)}{m_{1}^{\prime} m_{2}^{\prime}} t} t+B_{3} \sqrt{\frac{k\left(m_{1}^{\prime}+m_{2}^{\prime}\right)}{m_{1}^{\prime} m_{2}^{\prime}}} t+D_{3} \tag{33}
\end{equation*}
$$

The integrating constants expression and the particular solution from (11) are:

$$
\begin{gather*}
A_{3}=-\frac{(P-Q) m_{2}}{m_{1}+m_{2}} ; \quad B_{3}=\sqrt{\frac{m_{2}^{\prime}}{m_{1}^{\prime}+m_{2}^{\prime}} \cdot[2 P k \Delta+Q(2 P-Q)]} \\
D_{3}=\frac{P m_{2}+Q m_{1}}{m_{1}+m_{2}}=Q+\frac{(P-Q) m_{2}}{m_{1}+m_{2}} \tag{34}
\end{gather*}
$$

The maximum value of the effort in cable F_{3} is given by the relation [2]:

$$
\begin{equation*}
F_{3 \text { max }}^{\prime}=\frac{P m_{2}^{\prime}+Q m_{1}^{\prime}}{m_{1}^{\prime}+m_{2}^{\prime}}\left[1+\sqrt{\frac{1+m_{1}^{\prime}\left(m_{1}^{\prime}+m_{2}^{\prime}\right)\left(k m_{2} \dot{x}_{120}^{2}-Q^{2}\right)}{\left(P m_{2}^{\prime}+Q m_{1}^{\prime}\right)}}\right] \tag{35}
\end{equation*}
$$

where:

$$
\begin{equation*}
\dot{x}_{120}=\frac{B_{2}}{\sqrt{k m_{1}^{\prime}}} \tag{36}
\end{equation*}
$$

When $\Delta=0$ the maximum effort in the cable is:

$$
\begin{equation*}
F_{\max }^{\prime}=\frac{P m_{2}^{\prime}+Q m_{1}^{\prime}}{m_{1}^{\prime}+m_{2}^{\prime}}\left[1+\sqrt{1+\frac{Q^{2}\left(m_{1}^{\prime}+m_{2}^{\prime}\right) m_{1}^{\prime}}{\left(P m_{2}^{\prime}+Q m_{1}^{\prime}\right)^{2}}}\right] \tag{37}
\end{equation*}
$$

For the general rotating laws φ_{3} and φ_{4} given by the relation (2) and (12) it will be taken into account the stages of the load lifting through the effort developed in the cable computed according to the relation (28), (33), (36) and (37).
To calculate the general solution of rotating the linked supports of the chassis φ_{3} and φ_{4}, depending on the load lifting there are necessary 3 sets of values computed for $\mathrm{C}_{0}\left(\mathrm{C}_{0}^{\prime}\right)$; $\sqrt{\frac{C_{I}}{A}}\left(\sqrt{\frac{C_{3}}{A}}\right)$, and integrating constants $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\left(\mathrm{~A}_{1}^{\prime}, \mathrm{A}_{2}^{\prime}, \mathrm{A}_{3}^{\prime}\right)$, for 3 stages as follows:
Stage I: for calculating the efforts for pulling the cable F_{2} with relation (28) up to reaching the load value $\mathrm{Q}(\mathrm{t}=7 \mathrm{~s})$;

Stage II: at $\mathrm{t}=7 \mathrm{~s}$ (for the given example) this stage is completed; it follows an increase of the effort in cable F_{3} calculated by the relation (33) at times: $\mathrm{t}=8,9,10 \mathrm{~s}$, when reaching the maximum value, relations (36) and (37).

Stage III: Then, at $\mathrm{t}=17 \mathrm{~s}$, the effort in cable reaches again the value of the lifting load.
The three stages correspond to the solving of 3 particular solution (7) and (16) for which 3 values are calculated: $\mathrm{C}_{0}\left(\mathrm{C}_{0}^{\prime}\right) ; \sqrt{\frac{C_{I}}{A}}\left(\sqrt{\frac{C_{3}}{A}}\right)$ şi $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\left(\mathrm{~A}_{1}^{\prime}, \mathrm{A}_{2}^{\prime}, \mathrm{A}_{3}^{\prime}\right)$.

Calculus example

It is taken a terrain telescopic arm crane $(4 x 4 x 4)$ having crane load $Q=30-35 t$, minimum radius $\mathrm{R}=2,7 \mathrm{~m}$, nominal moment $\mathrm{M}_{\mathrm{n}}=35 \times 2,7=94,5 \mathrm{tm}$, total rolling mass $\mathrm{M}=24 \mathrm{t}$, counterweight maximum mass $\mathrm{m}_{\mathrm{cg}}=5,2 \mathrm{t}$, telescopic arm lenght $8,56-21,6 \mathrm{~m}$.

To lift the load we use the following notations:
m_{1}^{\prime} - redused mass at hoist, $\mathrm{m}_{1}^{\prime}=1800-3600 \mathrm{~kg}$.
$\mathrm{m}_{2}-$ lifting load mass, $\mathrm{m}_{2}^{\prime}=30000 \mathrm{~kg}$;
P - traction force of hoist on 11 cable branches $\mathrm{P}=32000 \mathrm{daN}$;
Δ - cable linking play, $\Delta=610^{-4}: 0,1 \mathrm{~m}$;
K - cable elastic constant, $\mathrm{k}=1890-5440 \mathrm{kN} / \mathrm{m}$
To construct the crane::
m_{1} - telescopic arm mass, $\mathrm{m}_{1}=3600 \mathrm{~kg}$;
m_{2} - revolving platform mass, counterweight, tilting cylinder, bearing, cage, $\mathrm{m}_{2}=10400 \mathrm{~kg}$;
$m_{3}+m_{4}$ - chassis mass, pressing pasts, axle trees, chassis cab, reservoirs, transmissions, control equipment:

$$
\mathrm{m}_{3}=5163 \mathrm{~kg} ; \quad \mathrm{m}_{4}=6737 \mathrm{~kg}
$$

I_{z} - two arm section moment of inertia, $I_{z}=23020 \mathrm{~cm}^{4}$;
V_{1}-arrow at the arm peak $V_{1}=-\frac{P l^{3}}{3 E I_{z}}$;
β_{1}-coefficient of arm elasticity $\beta_{1}=\frac{P}{V_{1}}=144111 \mathrm{daN} / \mathrm{m}$;
V_{2} - arrow of revolving platform: $\quad V_{2}=-\frac{P l^{2}}{48 E I_{z}}$
β_{2} - coefficient of platform elasticity $\beta_{2}=\frac{P}{V_{2}}=242862 \mathrm{daN} / \mathrm{m}$
$\mathrm{Iz}_{31} \mathrm{Iz}_{4}-$ moments of inertia of chassis masses: $\mathrm{Iz}_{3}=78500 \mathrm{~cm}^{4} ; \mathrm{Iz}_{4}<\mathrm{Iz}_{3}$
V_{3} - arrow of chassis hole in elastic-plastic regime;

$$
V_{e}=\frac{P_{e} \cdot l^{2}}{48 \varepsilon I_{z}} ; P=1,25 P_{e} ; V_{\max }=1,28 V_{e}
$$

P - maximum vertical load on chassis:
β_{3}, β_{4} - coefficients of back (front) chassis elasticity; $\beta_{3}=P / V_{e}$;

$$
\beta_{3}=1653150 \mathrm{daN} / \mathrm{m} ; \quad \beta_{4}=1211850 \mathrm{daN} / \mathrm{m}
$$

$\mathrm{K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}-$ cylindrical rigidity when bending $\mathrm{K}_{2}=243546,7 \mathrm{daNm}, \mathrm{K}_{3}=1-332187 \mathrm{daNm} ; \mathrm{K}_{4}$ - 17041640,6 daNm

Dimensions: $\mathrm{l}_{1}=8,56-21,6 \mathrm{~m} ; \mathrm{l}_{2}=\mathrm{m} 2,14 \mathrm{~m} ; \mathrm{l}_{3}=2,5 \mathrm{~m} ; \mathrm{l}_{4}=3,75 \mathrm{~m} ; \mathrm{a}_{1}=(4,28-8,67) \mathrm{m} ; \mathrm{b}_{1}=$ $4 \mathrm{~m} ; \mathrm{e}_{2}=1,2 \mathrm{~m} ; \mathrm{a}_{2}=1,2 \mathrm{~m} ; \mathrm{a}_{2}=0,9 \mathrm{~m} ; \mathrm{a}_{3}=1,25 \mathrm{~m} ; \mathrm{a}_{4}=1,87 \mathrm{~m} ; \mathrm{f}_{2}=1,3 \mathrm{~m}$.

Angles: tilting arm $\theta=0-75^{\circ}$;arm cylinder tilting $\alpha=42-117^{0}$.
For the example given there are 3 solutions for the rotations φ_{3}, φ_{4}, as follows:
on $\mathrm{t}=7 \mathrm{~s}$
A) Rotations for elastic fixing φ_{3} :
I) $\varphi_{3}(7)=1,2925 \cos 0,121 \cdot t+0,27958 \cos 4,664 t-0,2082 \cos (-2,32) t-0,0585$;
II) $\varphi_{3}(8-10)==1,14077 \cos 0,121 \cdot t+0,39376 \cos 4,664 t-0,32246 \cos (-2,32) t-$

$$
\begin{equation*}
-0,01355 \tag{38}
\end{equation*}
$$

III) $\varphi_{3}(17)=0,24757 \cos 0,121 \cdot t-0,02244 \cos 4,664 \cdot t-0,09574 \cos (-2,32) t-0,04475$
B) Rotations for elastic fixing φ_{4} :
at $\mathrm{t}=7 \mathrm{~s}$
I) $\quad \varphi_{4}(7)=-0,37248 \cos 0,0578 \mathrm{t}+0,172889 \cos 6,05 \mathrm{t}-0,19959$ at $\mathrm{t}=8,9,10 \mathrm{~s}$
II) $\quad \varphi_{4}(8-10)=-0,5546 \cos 0,0578 \mathrm{t}+0,00147 \cos 6,05 \mathrm{t}-0,60428$
III) $\varphi_{4}(17)=-0,3421 \cos 0,0578 \cdot t+0,001473 \cos 6,05 \cdot t-0,260835$

The graphics of the general solutions for rotations $\varphi_{3}(\mathrm{t})$ and $\varphi_{4}(\mathrm{t})$ are shown in fig 7 .

- curve I where it was taken into account the vertical possition of effort $\mathrm{F}_{2,3}$ of the lifting cable in the free term structure from the relations of type (38) and(39) ;
- curve II - free terms, in the expressions from the relation (38) and (39) $\mathrm{F}_{2,3}$ in the cable without a vertical positioning.

The elasticity coefficients computed for the given example are: $\beta_{1}=144111 \mathrm{daN} / \mathrm{m} ; \beta_{2}=245862$ $\mathrm{daN} / \mathrm{m} ; \beta_{3}=1653150 \mathrm{daN} / \mathrm{m} ; \beta_{4}=1211850 \mathrm{daN} / \mathrm{m}$.

It is possible that the great values given for the rotations $\varphi_{3,} \varphi_{4}$ to show that the chassis undetermined system of the statically linked bars to be transformed into a mechanism with yielding joints having cylindrical rigities when bending.

Fig.7. Graphics of the general solutions for rotations $\varphi_{3}(t)$ and $\varphi_{4}(t)$.

For the undetermined static sistem of bars with the above-mentioned joints and cylindrical rigidities that depend (in their turn) on the elasticity constants $\beta_{2}, \beta_{2}, \beta_{3}$ it was analysed the determinant $D=0$, consisiting of three movement equations, i.e. one for the arm in φ_{1}, one for the revolving platform in φ_{2} and the equation in φ_{4} for the crane construction. On the basis of characteristic equation analysis obtained from the determinant development it may be obtained certain criteria of construction stability or values for β_{2}, β_{3} şi K_{2}, K_{3}, K_{4}.

For the given example the imposed limits for $K_{3}, \beta_{2}, \beta_{3}$ are as follows:
For $K_{3}: K_{3}=2,69 \cdot 10^{6} \mathrm{daNm} ; \mathrm{K}_{3}=2,14 \cdot 10^{5} \mathrm{daNm}$;
For $\beta_{2}: \beta_{2}=1,62 \cdot 10^{6} \mathrm{daNm} ; 2,3 \cdot 10^{4} \mathrm{daNm} ;-6,4 \cdot 10^{4} \mathrm{daNm} ; 4,55 \cdot 10^{5} \mathrm{daNm}$;
For $\beta_{3}: \beta_{3}=56 \cdot 10^{6} \mathrm{daNm} ;-64 \cdot 10^{6} \mathrm{daNm}$;
It is evident the ratio between the elasticity coefficients from the revolving platform and the chassis:

$$
\begin{equation*}
\frac{\beta_{2}}{\beta_{3}}=\frac{1624497}{1653150}=0,9827 \tag{40}
\end{equation*}
$$

proving that the section between the 2 elastic forces F_{2}, F_{3} shown on a plate is subjected to a force couple $\mathrm{F}_{2} \approx \mathrm{~F}_{3}$ on the vertically opposed sides.
Under these conditions for the support corresponding to φ_{3} it was supposed an elasticity coefficient
$\mathrm{B}_{5}=56 \cdot 10^{6} \mathrm{daNm}$.

We think that the effort of the force couple in the central part of the core, facing the rotation crown, $\mathrm{F}_{2}, \mathrm{~F}_{3}$ that interchange the sign is further transmitted to the vertical reactions of the supports φ_{3}, φ_{4}.
It results the vertical oscillation of the masses m_{3}, m_{4} (here, decoupled by the effect of the rotations φ_{3}, φ_{4}) that can be evaluated dependent on time.
The differential equations of masses m_{3} and m_{4} independent movement have the following form

$$
\begin{equation*}
m_{3} \ddot{y}_{3}+y_{3} \cdot \beta_{3}=\frac{F_{2 \text { max }}^{\text {calc. }}}{\beta_{2}}=0,0366 \mathrm{~m} \tag{41}
\end{equation*}
$$

With the solution:

$$
\begin{equation*}
y_{3}=-0,0366 \cos 104,146 r+0,0366 \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{4} \ddot{y}_{4}+y_{4} \beta_{3}=\frac{F_{2 \max }^{\text {calc. }}}{-\beta_{3}}=0,03199 \mathrm{~m} \tag{43}
\end{equation*}
$$

with the solution:

$$
\begin{equation*}
y_{4}=0,0319 \cos 97,466 t-0,03199 \tag{44}
\end{equation*}
$$

The force $F_{2_{\max }}=\beta_{2} \cdot f_{2} \cdot \varphi_{2}$ is calculated using the different values obtained from the stability condition imposed to the construction, i.e. the analysis of the determinant $\mathrm{D}=0$.

It is known $\mathrm{m}_{3}, \mathrm{~m}_{4}, \beta_{3}, \mathrm{~F}_{2 \max }$. In equation (43): we have $\beta_{3}=-64 \cdot 10^{6} \mathrm{daN} / \mathrm{m}$, consisting for the joint with elastic support, elastic force F_{3} moment $\mathrm{K}_{2}, \quad \beta_{3}=56 \cdot 10^{6} \mathrm{daN} / \mathrm{m}$ respectively.

The graphs of the general solutions of mass m_{3}, m_{4} vertical movement are shown in fig 8 where there are the negative values for $\mathrm{y}_{4}(\mathrm{t})$ and the positive ones for $\mathrm{y}_{3}(\mathrm{t})$.

Fig.8. Graphs of the general solutions of mass m_{3}, m_{4} vertical movement.

Conclusions

The relation (40) shows the possibility of creating of the fourth joint of a possible yielding, thus permitting the differential equation of the independent movement for the two masses m_{3}, m_{4}.
The determined values for elasticity coefficients β and bending cylindrical rigidity coefficients K, using $\mathrm{D}=0$, lead the studied problem into the elastic-plastic domain.

The calculus in the elastic-plastic deformation domain basis on the fact that sometimes some permanent deformations may appear into the most stressed section, without destroing it completely or taking it out of use. If the plastic deformations increase too much, it may reach a limit state that correspond to a limit load which value may destroy the construction. The permitted load [1] is:

$$
\begin{equation*}
P_{a}=\frac{P_{\mathrm{im}}}{C} \tag{45}
\end{equation*}
$$

where: $\mathrm{P}_{\mathrm{lim}}$ - limit load: $\quad P_{\mathrm{lim}}=\frac{6 M_{\mathrm{lim}}}{l}$ sau $\frac{8 M_{\mathrm{lim}}}{l}$
dependent on the used calculus scheme for the yielding mechanism of the chassis on the whole (beam loaded with the fixed load and the single or jointed beam);

$$
\mathrm{C}-\text { safety coefficient }\left(\mathrm{C}=\varphi_{\max } / \varphi_{\text {stat }} ; \mathrm{y}_{\max } / \mathrm{y}_{\text {static }}\right) ;
$$

References

1. Buzdugan, Gh, s.a - Manualul inginerului mecanic, materiale, rezistența materialelor, stabilitate elastică, vibrații, Editura Tehnică Bucureşti.
2. Darabont, Al. - Socuri şi vibrații. Aplicații în tehnică, Editura Tehnica, Bucureşti, 1988.
3. Bolețeanu, L, Dobre, I. - Aplicații ale mecanicii solidului deformabil în construcția de maşini, Editura Facla, 1978.
4. Sarbu, L. - Starea de tensiune a fisurilor apărute în structura şasiului de macara mobilă pentru orice categorie de teren folosită în construcții. A 5-a Conferință Internațională Integritatea Structurală a Construcțiilor sudate. Incercarea şi evaluarea riscului la realizarea materialelor avansate şi a sudurilor, 20-21.11.2007, Timişoara pag.259-268.
5. Sârbu, L. - Maşini de tracțiune, sisteme de transport şi echipamente grele pentru construcții, vol.II, Editura Economică, Bucureşti, 2008.
6. * * * Indrumător matematic şi tehnic, Editura Tehnică, Bucureşti.
7. *** Cartea macaralei Tadano Faun All-Terrain ATF 30-2L, ISO 9001, planşe şasiu şi nervuri de întărire.

Analiza fisurilor în şasiu și comportarea elasto-plastică a structurii la macaralele cu braț telescopic

Rezumat

La macaralele mobile pentru orice categorie de teren folosite in construcții (ex. macaraua Tadano Faun ATF 30-2L), s-au constatat existența unor fisuri în structura şasiului de tipul (4x4x4), tip clasic cu 4 roți motoare şi directoare. Modul de apariție şi evoluția în timp a fisurilor nu este cunoscută, dar cu certitudine ele au fost generate de drumurile proaste pe care se deplasează macaraua în şantier, şi respectiv, de funcționarea ei cu blocarea suspensiei si sistemului automat de control al limitatorului de sarcină, care creşte valoarea stării de eforturi şi tensiuni în structura braţului şi a şasiului.
In continuare, se fac unele aprecieri asupra mecanicii ruperii şi dinamica fisurilor, şi se trag concluzii asupra cazului prezentat cum trebuie remediat.

