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Abstract 
 
It was determined that at the mobile cranes used in constructions on any type of terrain (for instance, at 
Tadano Faun ATF 30-21)  there are some cracks in the structure of the (4x4x4) – type chassis with motor 
and driving wheels. The way they appear and the crack evolution in time are not know but it is quite sure 
they were done by the bad roads of the sites where the crane moves as well as by operating it by blocking  
the suspension and the automatic control system of stress limiter which increases the induced efforts and 
stress value in the arm and chassis structure. 
Further, there are remarks on the cracking mechanics and crack dynamics, and. some conclusions are 
drawn regarding the case shown and the way it must be mended. 
 
Key words: cracks in the chassis, elastic-plastic behavior of the crane structure, scheme of lifting the 
load on the ground. 
 
 
 
 
Model description 

 
The metallic construction of the crane with telescopic arm consists of three main parts: the 
telescopic arm, the revolving platform, and the elastic chassis with pressing parts. 

The telescopic arm is a caisson construction consisting in many sections being elastic on the 
support of the tilting cylinder and fixed at one end by the revolving platform by a joint. On the 
concentrated mass of the arm a force of inertia  1 1m y&&  and a moment of inertia 1 1y ϕ&& act. The 
reduced load at the arm peak is Q = Qn and the arm weight is m1g ~G1n.  

From the arm equilibrium it results the reactions of the fixing joint X1Y1 and the tilting force in 
the cylinder F1. The arm rotation on the vertical under load is φ1. 

The revolving platform. The revolving forces in the arm fixing joint X1Y1 , tilting cylinder force 
F1, counterweight Gcg and platform weight Gp. Vertically act on the platform structure. Inside 
the platform assembly load centre the force of inertia 2zm y&&  and the moment of inertia 2zy ϕ&&  act 
as a result of the construction deformation under the lifting maximum load action as well as the 
arm weight, given by the rotation φ2. 
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The platform structure supporting is done by the support (considering it to be elastic) when the 
force F2 and the joint A2, act together with the reactions Xz, Y2 and cylindrical rigidity under 
bending K2. 

Crane chassis. The superstructure loadings are sent by the rotating coupling of the platform 
made of the actions F2,X2, Y2 şi K2. 

The chassis is considered to be an elastic structure of two masses m3 and m4, linked in the 
middle by a joint with yielding elastic joint where force F3 and two concentrated moment of the 
cylindrical rigidity when bending K2. act. 

Additionally, the elastic force F2 acts on mass m4. 

The ends of the two masses of the elastic chassis are coupled with the pressing system by joints 
A3,A4 and cylindrical rigidities at bending K3, K4. 

The loads are given by the weight forces as well as the structure component linking forces G3, 
G4, F2, X2, Y2 and K2. 

When the elastic structure with φ3, φ4 is rotated inside the mass load centre m3 and m4 of the 
chassis the forces of inertia 3 3m y&& , 4 4m y&&  together with the moments of inertia 3 3y ϕ&& , 4 4y ϕ&&  act, 

taking into account points A3 and A4. 

 

 
a 

 
b. 

Fig.1,a and b. Calculation scheme of the crane structure. 
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The scheme of the elastic construction used for the chassis (Fig.1, a and b) intends to emphasize 
the excessive deformations that may appear when working and produce cracks in the chassis 
structure (Fig.3 and 4). These appeared on the back section, bench the revolving crown when is 
coupled to the pressing parts boxes. These crack appear at the fixing welding of the section end 
gusset plates and at the tack welding of the front gusset plates respectively (Fig.2). 

Similar cracks appear at the top part of the front caisson base core of the chassis and gusset 
plates (fig.5) [4]. 

 

     
                Fig.2                    Fig.3                                Fig.4                                      Fig.5 

Figs. 2, 3, 4 and 5. Cracks in the chassis. 
 
Figure 2 shows the right back gusset on which one can see the real cracks in the weldings that 
set the chassis on the back setting casing. Figure 5 shows the crack in the gusset welding set the 
left box spare on the front crane casing. 

On the top, between the box spare housings a square plate is welded; it is cut at the middle 
which links the setting casing with the rotation crown support (see photo in Fig 3). At this plate 
there are now a series of cracks that are arranged along the longitudinal axis and crosswise in 
the 4 points along the plate diagonals. 

It is taken into consideration that actions F2 , X2 , Y2 , K2 are sent to the chassis and act together 
with the chassis elasticity that make the joint appear inside the chassis structure. The proposed 
model used the structure stress of the working maximum load action increased by 25%. If it is 
considered the process of the load from the support with a loosen lifting cable it must be taken 
into account the maximum effort F’

2,3 appeared in cable during the lifting [2]. 

The equation system show in the revolving of the metallic construction of the telescopic arm 
crane as follows: 
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where: 3 3 4 4l lϕ ϕ=  
 

Solving the equation system {1} against the rotation φ3 an unhomogeneous differential equation 
results: 
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The homogenous equation solution has the formula 3

kteϕ = ,resulting: 
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noting 2k u= , an incomplete equation results:                                                                (3) 
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For the right number the following general solutions are taken 2
kteϕ =   şi  1

kteϕ = . 
Resulting in φ2 for the differential equation: 
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where   2 0k = , so: 
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For the right number differentia equation in φ1 a characteristic equation results: 
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The particular solution given by the arm rotation is as follows: 
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The general solution of the unhomogenous differential equation in φ3 results: 
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having the initial conditions: 
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where: 
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Depending on sloping angle of the tilting cylinder one may calculate Qn, G1n an the lengthes l1, 
a1 are modified if the arm is telescoped. The load Qn modifies according to load diagram. 

The algebric equation system for calculating the integrating constants A1, A2, A3 is as follows: 
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It results from calculus: 
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The coefficients (11) have been computed from static rotation conditions φ1(0) = Co  of the 

loaded arm and the acceleration value 3(0) CI
A

ϕ =&& . 

Solving the equation system (1) depending on rotation φ4, it results: 
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The general homogenous equation solution (12) in  φ4 has the form  φ4 = ekt  
We have: 
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with the roots:   U1
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For the differential equations in the right number of the equation (12), the following solutions 
are choosen: 
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It results the general solution form of the rotation φ4 : 
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The initial conditions are set: 
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where the relations (19) and (20) are used to calculate C’
0 and  3C

A
  . 

The algebric equation system for calculating the integrating constants A1 , A2 , A3 is as follows: 
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Also, the coefficients A’

1, A’
2, A’

3 where calculated using the static rotation condition 
'
01 (0) Cϕ = of the loaded arm and the value of the construction rotating acceleration  

3
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C
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ϕ =&& . The particular solutions of the two rotation differential equations in φ3 , φ4 given 

by the relation (6, 20); as well as the acceleration expressions IC
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and  3C
A

 given by the 

relation (9) and (18) contain the lifting load Q. 

To correctly represent the rotations φ3 , φ4 of the chassis structure when lifting the load it will be 
taken into account the lifting process of the load on the ground when the cables of the lifting 
tackle are loosen. 

The scheme of  lifting  the load on the ground shown in fig.6, together with the calculus scheme 
of the telescopic arm crane construction fig.1, shows the way the transit regime calculus scheme 
modifies to the lifting mechanism represented by a sustem of two masses [2]. 

In fig.6,a the link between the two masses (m1 lifting mechanism mass reduced at hois and m2  - 
lifting load mass), is characterized by the play ∆. 

In fig 6,a the mass m1
1 moves with a constant acceleration under a constant traction force of the 

hoist P. 

 

 
Fig. 6. Scheme of lifting the load on the ground [2]. 

 
Duration of the first stage: 

    
'
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and the speed at its end (the begining of the second stage) will be: 
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In the second stage the tension F’

2 (fig.6,b) appear in the elastic cable, now being smaller than 
the load Q coresponding the mass m2, as the last one is stil non-operative. 
The movement differential equation is as follows: 
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The duration of the second stage is obtained from the time necessary to increase the tension in 
cable F’
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In the third stage the mass m2 is moved too (fig.6,c). The movement differential equations have 
the following form [2]: 
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The integrating constants expression and the particular solution from (11) are: 
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The maximum value of the effort in cable F’

3 is given by the relation [2]: 
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When ∆=0 the maximum effort in the cable is: 
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For the general rotating laws  φ3 andφ4 given by the relation (2) and (12) it will be taken into 
account the stages of the load lifting through the effort developed in the cable computed 
according to the relation (28), (33), (36) and (37). 
To calculate the general solution of rotating the linked supports of the chassis φ3 and φ4 , 
depending on the load lifting there are necessary 3 sets of values computed for C0 (C’

0);  

3I CC
A A

⎛ ⎞
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, and integrating constants A1 , A2 , A3 (A’
1 , A’

2 , A’
3 ), for 3 stages as follows: 

Stage I: for calculating the efforts for pulling the cable F’
2 with relation (28) up to reaching the 

load value  Q(t=7s); 
 

Stage II: at t=7s (for the given example) this stage is completed; it follows an increase of the 
effort in cable F’

3 calculated by the relation (33) at times: t = 8,9,10 s, when reaching the 
maximum value, relations (36) and (37). 

 
Stage III: Then, at t = 17 s, the effort in cable reaches again the value of the lifting load. 

The three stages correspond to the solving of 3 particular solution (7) and (16) for which 3 

values are calculated: C0 (C’
0);  3I CC

A A
⎛ ⎞
⎜ ⎟⎜ ⎟
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 şi A1 , A2 , A3 (A’
1 , A’

2 , A’
3 ). 

Calculus example 
 

It is taken a terrain telescopic arm crane (4x4x4) having crane load Q = 30 – 35 t, minimum 
radius R = 2,7 m, nominal moment Mn = 35 x 2,7 = 94,5 tm, total rolling mass M = 24 t, 
counterweight maximum mass mcg = 5,2 t, telescopic arm lenght 8,56 – 21,6 m. 

To lift the load we use the following notations: 
m’

1 – redused mass at hoist, m’
1 = 1800 – 3600 kg. 

m’
2 – lifting load mass, m’

2 = 30000 kg; 
P  - traction force of hoist on 11 cable branches P= 32000 daN; 
∆  - cable linking play, ∆ = 6 10-4 : 0,1 m; 
K  - cable elastic constant, k = 1890 – 5440 kN/m 

To construct the crane:: 
m1  - telescopic arm mass, m1 = 3600 kg; 
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m2  - revolving platform mass, counterweight, tilting cylinder, bearing, cage, m2  =10400 kg; 
m3 + m4 – chassis mass, pressing pasts, axle trees, chassis cab, reservoirs, transmissions, control 
equipment: 

   m3 = 5163 kg ;   m4 = 6737 kg 
 

Iz – two arm section moment of inertia,  Iz = 23020  cm4; 

V1 –arrow at the arm peak  
3

1 3 z

PlV
EI

= − ; 

β1  -coefficient of arm elasticity  1
1

144111P
V

β = =   daN/m; 

V2  - arrow of revolving platform:   
2

2 48 z

PlV
EI

= −  

β2  - coefficient of platform elasticity  2
2

242862P
V

β = =   daN/m 

Iz31 Iz4 – moments of inertia of chassis masses:  Iz3 = 78500 cm4 ; Iz4 < Iz3  
V3 – arrow of chassis hole in elastic-plastic regime; 

 

   
2

max; 1, 25 ; 1,28
48

e
e e e

z

P l
V P P V V

Iε
⋅

= = =  

P – maximum vertical load on chassis: 
β 3 , β4 – coefficients of back (front) chassis elasticity; β 3 = P/Ve ; 

  β 3 = 1653150 daN/m;  β 4 = 1211850 daN/m 
 

K2 , K3 , K4 – cylindrical rigidity when bending K2 = 243546,7 daNm, K3 = 1-332187 daNm; K4 
– 17041640,6 daNm 

Dimensions: l1 = 8,56 – 21,6 m; l2 =m 2,14 m; l3 =2,5 m; l4 = 3,75 m; a1 = (4,28 – 8,67) m; b1 = 
4m; e2 =1,2 m; a2 = 1,2 m; a2 = 0,9 m; a3 = 1,25 m; a4 = 1,87 m; f2 = 1,3 m. 

Angles: tilting arm θ = 0 – 750 ;arm cylinder tilting  α = 42 – 1170.  

For the example given there are 3 solutions for the rotations φ3 , φ4 , as follows: 

on t = 7s 
A) Rotations for elastic fixing φ 3 : 

I) φ 3(7) = 1,2925cos0,121 · t + 0,27958cos4,664 t – 0,2082cos(-2,32)t – 0,0585; 
II) φ 3(8-10) = = 1,14077cos0,121 · t + 0,39376cos4,664t – 0,32246cos(-2,32)t - 
                             -0,01355           (38) 
III) φ 3(17) = 0,24757cos0,121· t – 0,02244cos4,664 · t – 0,09574 cos(-2,32)t – 0,04475 

B) Rotations for elastic fixing φ4 : 
at t = 7s 

I) φ 4(7) = - 0,37248cos0,0578 t + 0,172889cos6,05 t – 0,19959                                (39) 
         at t = 8, 9, 10 s         
II) φ 4(8-10) = - 0,5546cos0,0578 t + 0,00147cos6,05 t – 0,60428 
III)  φ 4(17) = -0,3421cos0,0578· t + 0,001473cos6,05· t – 0,260835 

The graphics of the general solutions for rotations φ 3(t) and φ 4(t) are shown in fig 7. 
- curve I where it was taken into account the vertical possition of effort F’

2,3 of the lifting cable 
in the free term structure from the relations of type (38) and(39) ; 

- curve II – free terms, in the expressions from the relation (38) and (39)  F’
2,3 in the cable 

without a vertical positioning. 
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The elasticity coefficients computed for the given example are: β1 = 144111 daN/m; β2 =245862 
daN/m; β3 = 1653150 daN/m; β4 = 1211850 daN/m. 

It is possible that the great values given for the rotations  φ 3, φ 4 to show that the chassis 
undetermined system of the statically linked bars to be transformed into a mechanism with 
yielding joints having cylindrical rigities when bending. 

 

 
 

              Fig.7. Graphics of the general solutions for rotations φ 3(t) and φ 4(t). 
 
 

For the undetermined static sistem of bars with the above-mentioned joints and cylindrical 
rigidities that depend (in their turn) on the elasticity constants β2 , β2 , β3 it was analysed the 
determinant  D = 0, consisiting of three movement equations,i.e. one for the arm in φ1 , one for 
the revolving platform in φ2 and the equation in φ4 for the crane construction. On the basis of 
characteristic equation analysis obtained from the determinant development it may be obtained 
certain criteria of construction stability or values for β2 , β3 şi K2 , K3 , K4 . 

For the given example the imposed limits for K3, β2, β3 are as follows: 

For K3: K3 = 2,69 · 106 daNm ;   K3 = 2,14 · 105 daNm; 

For β2 : β2 = 1,62 · 106 daNm ;   2,3 · 104 daNm ;  - 6,4· 104 daNm ; 4,55 · 105 daNm ; 

For β3 : β3 =56 · 106 daNm ;  - 64 · 106 daNm ; 

It is evident the ratio between the elasticity coefficients from the revolving platform and the 
chassis: 

    2
3

1624497 0,9827
1653150

β
β

= =      (40)

  
proving that the section between the 2 elastic forces F2 , F3 shown on a plate is subjected to a 
force couple F2 ≈ F3 on the vertically opposed sides. 
Under these conditions for the support corresponding to  φ3 it was supposed an elasticity 
coefficient 

Β5 = 56 · 106 daNm . 
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We think that the effort of the force couple in the central part of the core, facing the rotation 
crown, F2 , F3 that interchange the sign is further transmitted to the vertical reactions of the 
supports φ3 , φ4 . 

It results the vertical oscillation of the masses m3 , m4 (here, decoupled by the effect of the 
rotations φ3 , φ4) that can be evaluated dependent on time. 

The differential equations of masses m3 and m4 independent movement have the following form  
.

2max
3 3 3 3

2
0,0366

calcF
m y y mβ

β
+ ⋅ = =&&                                   (41) 

With the solution: 

   3 0,0366cos104,146 0,0366y r= − +                                (42) 

and   
.

2max
4 4 4 3

3
0,03199

calcF
m y y mβ

β
+ = =

−
&&                   (43) 

with the solution:  

   4 0,0319cos97, 466 0,03199y t= −                                            (44) 

The force max2 2 2 2F fβ ϕ= ⋅ ⋅ is calculated using the different values obtained from the stability 

condition imposed to the construction, i.e. the analysis of the determinant  D=0. 

It is known m3 , m4 ,β3 , F2max. In equation (43): we have 6
3 64 10 /daN mβ = − ⋅ , consisting for the 

joint with elastic support, elastic force F3 moment K2,  6
3 56 10 /daN mβ = ⋅  respectively. 

The graphs of the general solutions of mass m3 , m4 vertical movement are shown in fig 8 where 
there are the negative values for y4(t) and the positive ones for y3(t). 

 

 
                Fig.8. Graphs of the general solutions of mass m3, m4 vertical movement. 
 
 
Conclusions 
 
The relation (40) shows the possibility of creating of the fourth joint of a possible yielding, thus 
permitting the differential equation of the independent movement for the two masses m3, m4. 

The determined values for elasticity coefficients β and bending cylindrical rigidity coefficients 
K, using D=0, lead the studied problem into the elastic-plastic domain. 
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The calculus in the elastic-plastic deformation domain basis on the fact that sometimes some 
permanent deformations may appear into the most stressed section, without destroing it 
completely or taking it out of use. If the plastic deformations increase too much, it may reach a 
limit state that correspond to a limit load which value may destroy the construction. The 
permitted load [1] is: 

    lim
a

P
P

C
=       (45) 

where: Plim – limit load:   lim lim
lim

6 8M M
P sau

l l
=      (46) 

dependent on the used calculus scheme for the yielding mechanism of the chassis on the whole 
(beam loaded with the fixed load and the single or jointed beam); 

          C – safety coefficient (C = φmax / φstat ;  ymax / ystatic );  
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Analiza fisurilor în şasiu şi comportarea elasto-plastică a 

structurii la macaralele cu braţ telescopic 
 
 

Rezumat 
 
La macaralele mobile pentru orice categorie de teren folosite în construcţii (ex.  macaraua Tadano Faun 
ATF 30-2L), s-au constatat existenţa unor fisuri în structura şasiului  de tipul (4x4x4), tip clasic cu 4 roţi 
motoare şi directoare. Modul de apariţie şi evoluţia în timp a fisurilor nu este cunoscută, dar cu 
certitudine ele au fost generate de drumurile proaste pe care se deplasează macaraua în şantier, şi 
respectiv, de funcţionarea ei cu blocarea suspensiei si sistemului automat de control al limitatorului de 
sarcină, care creşte valoarea stării de eforturi şi tensiuni în structura braţului şi a şasiului.  
In continuare, se fac unele aprecieri asupra mecanicii ruperii şi dinamica fisurilor, şi se trag  concluzii 
asupra cazului prezentat cum trebuie remediat. 
 


