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Abstract 

The present paper deals with the state of stress and deformation for thin circular plates subjected to 

symmetrical axial loading. The loading is a bending owing to the uniform distributed loads which act 

perpendicular to the mean surface of the plate, simultaneous with a membrane load (loads acting in the 

mean plane of the plate). This type of problem is solved by help of equations which result from the 

equilibrium of a plate’s element and from the boundary and continuity conditions of the mean surface of 

the plate. The following two cases have been considered: 

- the membrane stresses are small comparatively to the bending stresses; in this case the calculus is 

precise enough if we take into account only the mean plane extensions which will be superposed over the 

effects given by the transversal bending stress q; 

- the membrane stresses are considerable and cannot be neglected; in this case, second order calculus is 

required. 
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Introduction 

The present paper deals with the state of stress and deformation at thin circular plates under 

symmetrical axial loading. The loading is a bending owing to the uniform distributed loads, 

which act perpendicular to the mean surface of the plate, simultaneous with a membrane load 

(loads which are acting in the mean plane of the plate). This type of problem can be described 

by equations which result from the equilibrium of an attached plate element and from boundary 

conditions. In order to solve these problems, different methods have been suggested and used: 

Love’s displacement function, the use of the working lengthening tube of Popkowitsch, etc. 

Uses of the finite element method and of the finite difference method have shown a great 

usefulness, leading to very good results. The behaviour of the structures is described by help of 

a stiffness matrix, in the case of the displacements method, by a suppleness matrix, in case of 

the forces method, or by a stiffness matrix, in the case of the joint method. The above 

mentioned matrix are established using the finite element method, which is a method of 
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structures division and which requires the similitude of the model’s behaviour to the real 

structure. The displacements method is adequate for the symmetric structures and symmetric 

loaded structures. The displacements are defined in the interior of an element by polynomials 

containing a number of parameters equal to the number of the unknown displacements number 

of the element nodes. One gets the basis equations of this method by help of the energetic 

method, which is based on the principle of the constant value of the elastic potential. In calculus 

one may consider that the material remains in the limits of Hooke’s law validity, when external 

loads are acting upon it; a linear condition between stresses and deformations is required. At 

symmetrical axial state of stress correspond symmetrical axial states of deformation and the 

calculus can be made regarding the mean plane. Under these circumstances, the general 3-D 

problem can be reduced to a 2-D problem, where the stiffness is expressed by help of a mean 

section displacements. One divides the continuous structure into a system of symmetrical axial 

elements, whose unit element is defined as a plane finite element which rotates around the 

symmetry axis of the structure. 

Great Displacements. Equations of Equilibrium 

On basis of the notations from Figure 1, one calculates the length after deformation of an 

element whose initial length is dx: 
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where the approximation of the square root does not influence the calculus or the final results 

accuracy. One mention the fact that the mean plane deformations allow to neglect the term 
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Fig. 1. Displacements Fig. 2. Displacements 

 

In order to get the angular strain corresponding to the deformation w, normal to the mean plane, 

one study the case of the perpendicular elements of length dx and dy (AOB=/2), Figure 2. 

The wanted angular strain is given by the subtraction of the final value of the angle AOB 

(after deformation), A1OB1 from the initial angle AOB, plus the share of angular 

deformation brought by the linear displacements u and v (displacements in the mean plane of 

the plate). One writes the cosine of the angle A1OB1 as a dot product, getting: 
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One takes into account the share of the linear displacements u and v; one finally get the wanted 

angular strain: 
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From the specific literature (elastic theory), we have the expression of the mean surface 

curvatures: 
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If one works in plane coordinates, Figure 3, the equations of the strains and curvatures are 

easier. Equations (2) and (4) become: 

  

2

2

1










dr

dw

dr

du
r ;  

 
r

u

rd

rddur








           (5) 

   
2

2

dr

wd
r  ;   

dr

dw

r


1
            (6) 

 

Fig. 3. Strains and curvature in plane coordinate 

 

The load is performed in the field of linear elastic plastic deformations, so that between stresses 

and deformations following equations are valid (Hooke’s law): 
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One analyses equations (2) and (3). From these equations we get the deformations from the 

mean plane, these deformations being membrane deformations. One calculates the second 

derivative of the equations (2) and (3) with respect to y and to x and one neglects the high order 

infinitesimal; one derives equation (4) with respect to x and then with respect to y. We get the 

following expressions: 
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One adds the first two equations (8) and one subtract the third one. The compatibility equation 

(9) yields: 
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Substituting equation (7) in relation (9) it results a relation between stresses and deformations 

corresponding to the membrane state of stress: 
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General Equations at Bending with Constant Q and Loading 

in the Mean Plane of the Plate  

Further on we want to establish a calculus relation between stresses and deformations for the 

loading of the circular plate, in Figure 4. In this case, besides the bending due to the constant 

load q, the plate is subjected to tension because of the loads No (membrane load). 

One specifies the existence of the following two calculus methods [1]: 

a) the membrane stresses are small in comparison to those due to bending; in this case the 

calculus is precise enough if we consider only the extensions of the mean plane which are 

superposed on the effects caused by the transversal load q; 

b) the membrane stresses due to the loads p are big and cannot be neglected. That is the reason 

why the calculus must be continued. 

    

          Fig. 4.a               Fig. 4.b 

In order to take into account both the membrane stresses and the state stress caused by the 

bending loads, normal to the mean plane, one analyses the plate’s element of dimensions dxdy, 

in deformed state of the mean plane, Figure 5. 

The plate element in Figure 5 is in equilibrium under the action of the shown state of stresses 

and deformations. On basis of the projections upon axes x and y, taking into account the angles 

in the deformed state, we get the following two equilibrium equations: 
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Fig. 5. Equilibrium of the plate element 

Equations (11) and (12) take simple forms, easy to use after the approximations below: 
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The equations of equilibrium for a plane plate element are: 
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One derives them with respect to x and to y; by adding the yielded relations, we get: 

   
y

R

x

R

yxyx

yxyxxy

























2

2

2

22

2


         (15) 

One replaces equation (15) in Equation (10), which was obtained from the relation of 

compatibility (9). One gets finally: 
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In Equation (17) one takes into account the relations (11) and (12), the projections upon axis z, 

the curvatures given by relations (4) as well as the independent relations (14) and one yields the 

equation below [1]: 
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Equations (16) and (17) show the state of stress and deformation of the plate, under the 

following circumstances: bending under transversal loading q, taking into account both the 

membrane stresses and the mass forces (calculated on surface unit of the plate’s mean plane). 
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Deformații mari la plăci circulare plane subțiri solicitate 

la încovoiere de sarcini uniform distribuite și de sarcini 

de membrană.  Partea I – Considerații teoretice generale 

asupra deformațiilor mari 

Rezumat 

Lucrarea de față se ocupă de starea de tensiune și de deformație la plăci circulare subțiri aflate într-o 

stare de solicitare axial-simetrică. Solicitarea este de încovoiere datorata sarcinilor uniform distribuite 

care acționează perpendicular pe suprafața mediana a plăcii, in condițiile existentei si a unei încărcări 

de membrana. Acest tip de problema poate fi descrisă de patru ecuații diferențiale. Două dintre acestea 

rezultă din condițiile de echilibru ale unui element de placă, celelalte două rezultă din realizarea 

“condițiilor de margine”. Folosirea metodei elementelor finite a arătat o mare utilitate, cu obținerea de 

rezultate foarte bune. Comportarea structurilor este descrisă de o matrice de rigiditate în cazul metodei 

deplasărilor, de o matrice de flexibilitate în cazul metodei forțelor sau de o matrice de rigiditate în cazul 

metodei mixte. Metoda deplasărilor este foarte indicată pentru structuri simetrice și simetric încărcate. 

Deplasările sunt definite în interiorul unui element prin polinoame care conțin un număr de parametri 

egal cu numărul deplasărilor necunoscute ale nodurilor elementului. Relațiile de bază ale acestui 

procedeu se deduc din considerații energetice și se bazează pe principiul valorii staționare a 

potențialului elastic. 

În calcule se consideră că răspunsul materialului la acțiunea sarcinilor exterioare rămâne în limitele 

valabilității legii lui Hooke; se impune ,,o condiție’’ liniară între tensiuni și deformații. La stări de 

tensiune axial-simetrice corespund stări de deformație axial-simetrice și calculele se pot face cu referire 

la planul median. În aceste condiții, problema tridimensională generală se poate reduce la o problemă 

bidimensională, la care rigiditatea se poate exprima prin deplasările unei secțiuni mediane. Structura 

continuă se împarte într-un sistem de elemente axial-simetrice, la care elementul unitar este definit ca un 

element finit plan ce se rotește în jurul axei de simetrie a structurii. 


