Loading State in the Leaning Zone of the Cylindrical Vertical Boilers on Rigid Foundations. Theoretical Study

Radu I. Iatan*, Carmen T. Popa **
* University POLITEHNICA of Bucharest, Splaiul Independentei 313, cod 040602, Bucharest e-mail: r_iatan@yahoo.com;
** University VALAHIA of Târgoviste
e-mail: carmenpopa2001@yahoo.com

Abstract

The paper sets out two ways of analyzing of the loading states developed in the joint zone of the cylindrical bodies of the vertical boilers with the bottoms leaning on rigid foundations of concrete. The theory with bending moments is taken into account, using the equations of continuity of the deformations - radial displacements and rotations.

Key words: cylindrical boiler, rigid foundation

Assuming the theory with moments of the revolution shells, in the separation plan of the cylindrical shell rings of the vertical boilers with flat bottoms leaning on rigid foundations, it is noted that the boiler bottom is required on the periphery of the radial bending moments (of joint) M_{0}.

Loaded with transverse load $q=p_{h}+p_{m}$, the boiler bottom has a curved annular marginal portion (Fig. 1), while a central area of r_{0} radius remains flat.

The analysis of the loading state of the boiler bottom is made in two types of study.

Fig. 1 Annular marginal portion of the boiler bottom

Variant I [1-3]

For the uniformly loaded annular portion the expression of the vertical displacement can be written in the form of:

$$
\begin{equation*}
w=C_{1}+C_{2} \cdot \ln r+C_{3} \cdot r^{2}+C_{4} \cdot r^{2} \cdot \ln r+\frac{q \cdot r^{4}}{64 \cdot \mathfrak{R}_{f}}, \tag{1}
\end{equation*}
$$

for determining the constants of integration disposing of the limit conditions:

$$
\begin{gather*}
(w)_{r=R_{m}}=0 ; \quad\left(M_{r}\right)_{r=R_{m}}=-M_{0}^{\bullet} ; \tag{2}\\
(w)_{r=r_{0}}=0 ; \quad\left(\frac{d w}{d r}\right)_{r=r_{0}}=0 ; \quad\left(M_{r}\right)_{r=r_{0}}=0, \tag{3}
\end{gather*}
$$

where the expression of the total radial bending moment developed at the bottom of the boiler (as opposed to the indication from $[1,3]$ the bending moment developed of the P_{0} cutting load, moved along the medium fiber of the bottom is taken into account, too) is inserted:

$$
\begin{equation*}
M_{0}^{\bullet}=0,5 \cdot \delta_{f} \cdot P_{0}+M_{0} \tag{4}
\end{equation*}
$$

(the positive direction of the M_{0} radial bending moment corresponds to that of figure 1 , and of the P_{0} radial load, when it is directed outwards from the bottom of the boiler).

It seeks, on the other hand, that the φ_{0} angle of rotation is small, so the tangential component to the deformed surface of the bottom of the boiler to the circumference of R_{m} radius is practically constant with the P_{0} radial load $\left(P_{0} \cdot \cos \varphi_{0} \approx P_{0}\right)$.
Five algebraically equations containing the constants of integration from the (1) structures of the vertical displacement, written in the form [1-3] are concluded:

$$
\begin{align*}
& C_{1}+C_{2} \cdot \ln R_{m}+C_{3} \cdot R_{m}^{2}+C_{4} \cdot R_{m}^{2} \cdot \ln R_{m}=-\frac{q \cdot R_{m}^{4}}{64 \cdot \Re_{f}} ; \tag{5}\\
& C_{1}+C_{2} \cdot \ln r_{0}+C_{3} \cdot r_{0}^{2}+C_{4} \cdot r_{0}^{2} \cdot \ln r_{0}=-\frac{q \cdot r_{0}^{4}}{64 \cdot \mathfrak{R}_{f}} ; \tag{6}\\
& C_{2} \cdot \frac{v_{f}-1}{R_{m}^{2}}+2 \cdot C_{3} \cdot\left(v_{f}+1\right)+C_{4} \cdot\binom{3+2 \cdot \ln R_{m}+}{+2 \cdot v_{f} \cdot \ln R_{m}+v_{f}}= \\
& =-\frac{q \cdot R_{m}^{2}}{16 \cdot \Re_{f}} \cdot\left(3+v_{f}\right)+\frac{M_{0}^{\bullet}}{\mathfrak{R}_{f}} ; \tag{7}\\
& C_{2} \cdot \frac{v_{f}-1}{r_{0}^{2}}+2 \cdot C_{3} \cdot\left(v_{f}+1\right)+ \\
& +C_{4} \cdot\binom{3+2 \cdot \ln r_{0}+}{+2 \cdot v_{f} \cdot \ln r_{0}+v_{f}}=-\frac{q \cdot r_{0}^{2}}{16 \cdot \Re_{f}} \cdot\left(3+v_{f}\right) ; \tag{8}\\
& C_{2} \cdot \frac{1}{r_{0}}+2 \cdot C_{3} \cdot r_{0}+C_{4} \cdot r_{0} \cdot\left(2 \cdot \ln r_{0}+1\right)=-\frac{q \cdot r_{0}^{3}}{16 \cdot \Re_{f}} . \tag{9}
\end{align*}
$$

After some necessary changes (the decrease of the (5) and (6) equations and the replacement of the C_{2} constant based of C_{4}, from the equality resulted by the subtracting of the (7) and (8) equations, inclusive in (5), the original unchanged), a new system is inferred, after the form [2]:

$$
\begin{gather*}
C_{1}+C_{3} \cdot R_{m}^{2}-C_{4} \cdot\left(A_{2}-R_{m}^{2}\right) \cdot \ln R_{m}=-\frac{q \cdot R_{m}^{4}}{64 \cdot \mathfrak{R}_{f}}+ \tag{10}\\
+A_{3} \cdot \ln R_{m}+A_{4} \cdot M_{0} \cdot \ln R_{m} ; \\
C_{3} \cdot\left(R_{m}^{2}-r_{0}^{2}\right)-C_{4} \cdot\left(A_{2} \cdot \ln \frac{R_{m}}{r_{0}}-R_{m}^{2} \cdot \ln R_{m}+r_{0}^{2} \cdot \ln r_{0}\right)= \tag{11}\\
=-\frac{q}{64 \cdot \mathfrak{R}_{f}} \cdot\left(R_{m}^{4}-r_{0}^{4}\right)+A_{3} \cdot \ln \frac{R_{m}}{r_{0}}+A_{4} \cdot M_{0} \cdot \ln \frac{R_{m}}{r_{0}} ; \\
C_{3} \cdot 2 \cdot\left(1+v_{f}\right)+C_{4} \cdot\left(A_{1}+\frac{1-v_{f}}{R_{m}^{2}} \cdot A_{2}\right)=-\frac{q \cdot R_{m}^{2}}{16 \cdot \mathfrak{R}_{f}} \cdot\left(3+v_{f}\right)+ \tag{12}\\
\quad+\left(\frac{1}{\mathfrak{R}_{f}}-\frac{1-v_{f}}{R_{m}^{2}} \cdot A_{4}\right) \cdot M_{0}-\frac{1-v_{f}}{R_{m}^{2}} \cdot A_{3} ; \\
C_{2}+C_{4} \cdot A_{2}=-A_{3}-A_{4} \cdot M_{0} ; \tag{13}\\
C_{3} \cdot 2 \cdot r_{0}-C_{4} \cdot\left[\frac{A_{2}}{r_{0}}+r_{0} \cdot\left(1+2 \cdot \ln r_{0}\right)\right]=-\frac{q \cdot r_{0}^{3}}{16 \cdot \Re_{f}}+\frac{A_{3}}{r_{0}}+\frac{A_{4}}{r_{0}} \cdot M_{0}^{:} \tag{14}
\end{gather*}
$$

The analytical solving of the system consists of the (10) ... (14) equalities lead to the following results, accepting known the total radial bending moment:

$$
\begin{align*}
C_{1}=-\left\{\frac{R_{m}^{2}}{2 \cdot r_{0}}\right. & \left.\cdot\left[\frac{A_{2}}{r_{0}}+r_{0} \cdot\left(2 \cdot \ln r_{0}+1\right)\right]-\left(A_{2}-R_{m}^{2}\right) \cdot \ln R_{m}\right\} \cdot C_{4}- \tag{15}\\
& -\frac{q \cdot R_{m}^{4}}{64 \cdot R_{f}}+\left(A_{3}+A_{4} \cdot M_{0}^{\cdot}\right) \cdot \ln R_{m} ; \\
& C_{2}=-A_{2} \cdot C_{4}-A_{3}-A_{4} \cdot M_{0}^{\cdot} ; \tag{16}\\
C_{3}= & \frac{1}{2 \cdot r_{0}} \cdot\left[\frac{A_{2}}{r_{0}}+r_{0} \cdot\left(2 \cdot \ln r_{0}+1\right)\right] \cdot C_{4}- \tag{17}\\
& -\frac{q \cdot r_{0}^{2}}{32 \cdot \Re_{f}}+\frac{1}{2 \cdot r_{0}^{2}} \cdot\left(A_{3}+A_{4} \cdot M_{0}\right) ; \\
C_{4} & =\frac{A_{6}+A_{7} \cdot M_{0}}{A_{5}}=\frac{A_{9}+A_{10} \cdot M_{0}}{A_{8}}, \tag{18}
\end{align*}
$$

with notations:

$$
\begin{gather*}
A_{1}=3+v_{f}+2 \cdot\left(1+v_{f}\right) \cdot \ln R_{m} ; \tag{19}\\
A_{2}=\frac{2 \cdot\left(1+v_{f}\right)}{1-v_{f}} \cdot \frac{R_{m}^{2} \cdot r_{0}^{2}}{R_{m}^{2}-r_{0}^{2}} \cdot \ln \frac{R_{m}}{r_{0}} ; \tag{20}\\
A_{3}=\frac{3+v_{f}}{16 \cdot\left(1-v_{f}\right)} \cdot \frac{q}{\Re_{f}} \cdot R_{m}^{2} \cdot r_{0}^{2} ; \tag{21}\\
A_{4}=\frac{R_{m}^{2} \cdot r_{0}^{2}}{\left(1-v_{f}\right) \cdot\left(R_{m}^{2}-r_{0}^{2}\right) \cdot \Re_{f}} ; \tag{22}\\
A_{5}=\frac{R_{m}^{2}-r_{0}^{2}}{2 \cdot r_{0}} \cdot\left[\frac{A_{2}}{r_{0}}+r_{0} \cdot\left(2 \cdot \ln r_{0}+1\right)\right]- \tag{23}\\
-A_{2} \cdot \ln \frac{R_{m}}{r_{0}}+R_{m}^{2} \cdot \ln R_{m}-r_{0}^{2} \cdot \ln r_{0} ; \\
A_{6}=-\frac{q}{64 \cdot \Re_{f}} \cdot\left(R_{m}^{2}-r_{0}^{2}\right)-A_{3} \cdot\left(\frac{R_{m}^{2}-r_{0}^{2}}{2 \cdot r_{0}^{2}}-\ln \frac{R_{m}}{r_{0}}\right) ; \tag{24}\\
A_{7}=-\left(\frac{R_{m}^{2}-r_{0}^{2}}{2 \cdot r_{0}^{2}}-\ln \frac{R_{m}}{r_{0}}\right) \cdot \frac{R_{m}^{2} \cdot r_{0}^{2}}{\left(1-v_{f}\right) \cdot\left(R_{m}^{2}-r_{0}^{2}\right) \cdot \Re_{f}} ; \tag{25}\\
A_{8}=\left(1+v_{f}\right) \cdot\left(1+2 \cdot \ln r_{0}\right)+A_{1}+\left(\frac{1+v_{f}}{r_{0}^{2}}+\frac{1-v_{f}}{R_{m}^{2}}\right) \cdot A_{2} ; \tag{26}\\
A_{9}=-\frac{q}{16 \cdot R_{f}} \cdot\left[\left(3+v_{f}\right) \cdot R_{m}^{2}-\left(1+v_{f}\right) \cdot r_{0}^{2}\right]-\left(\frac{1-v_{f}}{R_{m}^{2}}+\frac{1+v_{f}}{r_{0}^{2}}\right) \cdot A_{3} ; \tag{27}\\
A_{4}=\frac{1}{\Re_{f}}-\left(\frac{1-v_{f}}{R_{m}^{2}}+\frac{1+v_{f}}{r_{0}^{2}}\right) \cdot A_{4} \cdot \tag{28}
\end{gather*}
$$

The equalization of the reports from (18) leads to:

$$
\begin{equation*}
M_{0}^{\cdot}=\frac{A_{5} \cdot A_{9}-A_{6} \cdot A_{8}}{A_{7} \cdot A_{8}-A_{5} \cdot A_{10}}, \tag{29}
\end{equation*}
$$

expression that permit the determination ok the r_{0} radius position, knowing the value of the M_{0}^{*} radial bending moment.

Variant II

Note: In this study variant the P_{0} and M_{0}, boundary loads, are unknown.
This time, a boiler whose weight of the metal part and possibly of the thermal insulation and / or of the deposited snow on its cover is G_{r}, a p_{0} under pressure of a gas above the stored liquid,
having the ρ_{f} density and the H_{f} height, leaning on a rigid foundation of concrete is considered.
In equations (10) ... (14) is added:

$$
\begin{equation*}
w_{r b}=0 ;\left(\frac{d w}{d r}\right)_{r=R_{m}}=\vartheta_{m}, \tag{30}
\end{equation*}
$$

where the $w_{r b}$ total radial displacement at the boiler base is expressed as:

$$
\begin{gather*}
w_{r b}=-\frac{1}{4 \cdot k_{m}^{4} \cdot \mathbb{R}_{m}} \cdot\left[\rho_{f} \cdot g \cdot H_{f}+\frac{v_{m} \cdot G_{r}}{2 \cdot \pi \cdot R_{m}^{2}}+\frac{1}{2} \cdot\left(2-v_{m}\right) \cdot p_{0}\right]+ \\
+\frac{2 \cdot k_{m} \cdot R_{m}^{2}}{\delta_{m} \cdot E_{m}} \cdot P_{0}-\frac{2 \cdot k_{m}^{2} \cdot R_{m}^{2}}{\delta_{m} \cdot E_{m}} \cdot M_{0}, \tag{31}
\end{gather*}
$$

respectively the ϑ_{m} rotation of the median surface at the boiler base:

$$
\begin{equation*}
\vartheta_{m}=\frac{\rho_{f} \cdot g}{4 \cdot k_{m}^{4} \cdot R_{m}}-\frac{2 \cdot k_{m}^{2} \cdot R_{m}^{2}}{\delta_{m} \cdot E_{m}} \cdot P_{0}+\frac{4 \cdot k_{m}^{3} \cdot R_{m}^{2}}{\delta_{m} \cdot E_{m}} \cdot M_{0} . \tag{32}
\end{equation*}
$$

Were also used, the action meanings of the P_{0} cutting load and of the M_{0} bending moment, both on the boiler bottom and the lower shell rings of its.
Differentiating the (1) expression and customizing the result for the circumference of R_{m} radius is reached:

$$
\begin{equation*}
\left(\frac{d w}{d r}\right)_{r=R_{m}}=\frac{1}{R_{m}} \cdot C_{2}+2 \cdot R_{m} \cdot C_{3}+R_{m} \cdot\left(1+2 \cdot \ln R_{m}\right) \cdot C_{4}+\frac{q \cdot R_{m}^{3}}{16 \cdot \mathfrak{R}_{f}} . \tag{33}
\end{equation*}
$$

In the effectuated calculations the $q=p_{h}+p_{0}$ load will take into account.
The G_{r} weight was considered uniform distributed on the boundary of R_{m} radius, helping to keep the boiler bottom in contact with the foundation and making possible the hypothesis of its undeformation in radial direction (see equation (30) 1).
And this time, too, the (4) expression of the total radial bending moment will be used, which action on the contact boundary with lower shell rings of the boiler. From the (30) ${ }_{1}$ condition the expression of the cutting load is established:

$$
\begin{equation*}
P_{0}=\frac{B_{2}}{B_{1}} \cdot M_{0}+\frac{B_{3}}{B_{1}}, \tag{34}
\end{equation*}
$$

and from the (4) equality:

$$
\begin{equation*}
M_{0}=B_{4} \cdot M_{0}^{0}+B_{5} . \tag{35}
\end{equation*}
$$

After replacing the (34) and (35) expressions in the (30) 2_{2} equation the expression of the C_{4} constant is determined which allows for the deduction of the relations for C_{2} from (13), respectively for C_{3} from (14).
Finally, the (10) equation helps to establish the expression for C_{1}. As such, this time:

$$
\begin{array}{ll}
C_{1}=B_{15}-B_{16} \cdot M_{0}^{\bullet} ; & C_{2}=B_{11}-B_{12} \cdot M_{0}^{\bullet} \\
C_{3}=B_{13}+B_{14} \cdot M_{0}^{\bullet} ; & C_{4}=\frac{B_{9}}{B_{8}}+\frac{B_{10}}{B_{8}} \cdot M_{0}^{\bullet} \tag{37}
\end{array}
$$

where the notations are used:

$$
\begin{align*}
& B_{1}=\frac{2 \cdot k_{m} \cdot R_{m}^{2}}{\delta_{m} \cdot E_{m}} ; \quad B_{2}=\frac{2 \cdot k_{m}^{2} \cdot R_{m}^{2}}{\delta_{m} \cdot E_{m}} ; \tag{38}\\
& B_{3}=\frac{1}{4 \cdot k_{m}^{4} \cdot \mathfrak{R}_{m}} \cdot\left[\rho_{f} \cdot g \cdot H_{f}+\frac{v_{m} \cdot G_{r}}{2 \cdot \pi \cdot R_{m}^{2}}+\frac{1}{2} \cdot\left(2-v_{m}\right) \cdot p_{0}\right] ; \tag{39}\\
& B_{4}=0,5 \cdot \delta_{f} \cdot\left(B_{2} / B_{1}\right)+1 ; \quad B_{5}=0,5 \cdot \delta_{f} \cdot\left(B_{3} / B_{1}\right) ; \tag{40}\\
& B_{6}=-\frac{q}{4} \cdot\left(\frac{g}{k_{m}^{4} \cdot \mathfrak{R}_{m}}+\frac{R_{m}^{3}}{4 \cdot \mathfrak{R}_{f}}\right)+B_{2} \cdot B_{5} \cdot\left(2 \cdot k_{m}-\frac{B_{2}}{B_{1}}\right)-\frac{B_{2} \cdot B_{3}}{B_{1}} ; \tag{41}\\
& B_{7}=B_{2} \cdot B_{4} \cdot\left(2 \cdot k_{m}-B_{2} / B_{1}\right) ; \tag{42}\\
& B_{8}=-\frac{A_{2}}{R_{m}}+\frac{R_{m}}{r_{0}} \cdot\left[\frac{A_{2}}{r_{0}}+r_{0} \cdot\left(1+2 \cdot \ln r_{0}\right)\right]+R_{m} \cdot\left(1+2 \cdot \ln R_{m}\right) ; \tag{43}\\
& B_{9}=A_{3} \cdot\left(\frac{1}{R_{m}}-\frac{R_{m}}{r_{0}^{2}}\right)+\frac{q \cdot R_{m} \cdot r_{0}^{2}}{16 \cdot \Re_{f}}+B_{6} ; \tag{44}\\
& B_{10}=A_{4} \cdot\left(\frac{1}{R_{m}}-\frac{R_{m}}{r_{0}^{2}}\right)-B_{7} ; \tag{45}\\
& B_{11}=-A_{2} \cdot \frac{B_{9}}{B_{8}}-A_{3} ; \quad B_{12}=A_{2} \cdot \frac{B_{10}}{B_{8}}+A_{4} ; \tag{46}\\
& B_{13}=\frac{1}{2 \cdot r_{0}} \cdot \frac{B_{9}}{B_{8}} \cdot\left[\frac{A_{2}}{r_{0}}+r_{0} \cdot\left(1+2 \cdot \ln r_{0}\right)\right]-\frac{q \cdot r_{0}^{2}}{32 \cdot \mathfrak{R}_{f}}+\frac{A_{3}}{2 \cdot r_{0}^{2}} ; \tag{47}\\
& B_{14}=\frac{1}{2 \cdot r_{0}} \cdot \frac{B_{10}}{B_{8}} \cdot\left[\frac{A_{2}}{r_{0}}+r_{0} \cdot\left(1+2 \cdot \ln r_{0}\right)\right]+\frac{A_{4}}{2 \cdot r_{0}^{2}} ; \tag{48}\\
& B_{15}=-B_{13} \cdot R_{m}^{2}+\frac{B_{9}}{B_{8}} \cdot\left(A_{2}-R_{m}^{2}\right) \cdot \ln R_{m}-\frac{q \cdot R_{m}^{4}}{64 \cdot \Re_{f}}+A_{3} \cdot \ln R_{m} ; \tag{49}\\
& B_{16}=-B_{14} \cdot R_{m}^{2}+\left[\frac{B_{10}}{B_{8}} \cdot\left(A_{2}-R_{m}^{2}\right)+A_{4}\right] \cdot \ln R_{m} . \tag{50}
\end{align*}
$$

Substituting the (37) expressions of the C_{3} and C_{4} constants in the (12) and (13) equalities, the relationship of the M_{0}^{\bullet} total radial bending moment is deduced as:

$$
\begin{equation*}
M_{0}^{\dot{0}}=\frac{B_{18}}{B_{17}}=\frac{B_{20}}{B_{19}}, \tag{51}
\end{equation*}
$$

which the equality is established, too:

$$
\begin{equation*}
B_{18} \cdot B_{19}=B_{17} \cdot B_{20}, \tag{52}
\end{equation*}
$$

which allows the r_{0} radius evaluation of the circumference that separates the two areas of the boiler bottom, the outer curved and the inner planar shape, in contact with the rigid foundation. In the (51) and (52) equalities the notations have used:

$$
\begin{align*}
& B_{17}=B_{14} \cdot\left(R_{m}^{2}-r_{0}^{2}\right)-\frac{B_{10}}{B_{8}} \cdot\binom{A_{2} \cdot \ln \frac{R_{m}}{r_{0}}-}{-R_{m}^{2} \cdot \ln R_{m}+r_{0}^{2} \cdot \ln r_{0}}-A_{4} \cdot \ln \frac{R_{m}}{r_{0}} ; \tag{53}\\
& B_{18}=-\frac{q}{64 \cdot \mathfrak{R}_{f}} \cdot\left(R_{m}^{4}-r_{0}^{4}\right)+A_{3} \cdot \ln \frac{R_{m}}{r_{0}}-B_{13} \cdot\left(R_{m}^{2}-r_{0}^{2}\right)+ \\
&+\frac{B_{9}}{B_{8}} \cdot\left(A_{2} \cdot \ln \frac{R_{m}}{r_{0}}-R_{m}^{2} \cdot \ln R_{m}+r_{0}^{2} \cdot \ln r_{0}\right) ; \tag{54}\\
& B_{19}=2 \cdot B_{14} \cdot\left(1+v_{f}\right)+\frac{B_{10}}{B_{8}} \cdot\left(A_{1}+\frac{1-v_{f}}{R_{m}^{2}} \cdot A_{2}\right)-\frac{1}{\Re_{f}}+\frac{1-v_{f}}{R_{m}^{2}} \cdot A_{4} ; \tag{55}\\
& B_{20}=-\frac{q \cdot R_{m}^{2}}{16 \cdot \mathfrak{R}_{f}} \cdot\left(3+v_{f}\right)-\frac{1-v_{f}}{R_{m}^{2}} \cdot A_{3}- \\
&-2 \cdot B_{13} \cdot\left(1+v_{f}\right)-\frac{B_{9}}{B_{8}} \cdot\left(A_{1}+\frac{1-v_{f}}{R_{m}^{2}} \cdot A_{2}\right) . \tag{56}
\end{align*}
$$

To estimate the loading state developed in the cylindrical shell rings and in the bottom of the boiler has to be adopted the following algorithm:
o From the (52) equality the r_{0} radius position is determined;
o The (51) expression allows the calculation of the M_{0}^{0} total radial bending moment, and further, the M_{0} contour radial bending moment with the (35) equality and P_{0} cutting load with the (34) relation;
o The induced stress from the lower shell rings is assessed with the known relations [2], which based the equivalent stresses are determined;
o Using the (36), (37) constants of integration, the boiler bottom vertical displacement expression, the median fiber rotation of it, respectively the annular and radial stresses with known relations, respectively of the equivalent stresses are established.

Notations

q - normal load at the median surface of the bottom boiler; p_{h} - developed hydrostatic pressure of the stored fluid; $p_{m}-$ equivalent pressure given by the metallic mass of the
vertical cylindrical boiler; M_{0} - unit radial bending moment of contour; R_{m} - radius of the median circumference of the cylindrical body of the boiler; r_{0} - radius of the plan circumference of the bottom of the boiler in service; w - vertical displacement of the bottom of the boiler under the action of the external loads; r - current radius of the boiler bottom; $\mathfrak{R}_{m}, \mathfrak{R}_{f}$ - cylindrical rigidity of the boiler body, respectively of the boiler bottom; $M_{r}-$ unit radial bending moment; P_{0} - liaison cutting load, developed in the plan for separating of the cylindrical shell rings of the bottom of the boiler; φ_{0} - rotation angle of the bottom of the boiler; $w_{r b}$ - total radial displacement at the base of the boiler; ϑ_{m} - rotation of the cylindrical median surface at the boiler bottom; δ_{m} - thickness of the cylinder wall; ρ_{f} - density of the stored fluid; v_{m} - transverse contraction coefficient of the material of the boiler body; H_{f} - height of the column of the stored fluid; E_{m} - elasticity longitudinal modulus of the material of the boiler; k_{m} - attenuation factor for the base cylindrical shell rings of the boiler [2]; G_{r} - the constructive weight of the boiler; C_{1}, \cdots, C_{4} - integration constants.

Conclusions

Resorting to the theory with bending moments, based on the continuity equations of the deformation - radial displacements and rotations - by two types of variants analysis, the liaison loads are determined. Based on these, the radial and annular stresses, respectively the annular and equivalent stresses are determined.
In this way, the bearing capacity of the structure is evaluated.
Subsequent examples will illustrate both the deformation of the boiler bottom and the lower mantle, and developed induced stresses.

References

1. L ' H e r m it e, R., Résistance des matériaux (Théorique et expérimentale), tom I, Dunod, Paris, 1954.
2. I a t a n, I. R., P o p a, T. C a rmen, Solicitări termo-mecanice in plăci circulare netede, Editura MatrixRom, Bucureşti, 2010.
3. Timoshenko, S. P., W o in ov sky-Krieg er, Teoria plăcilor plane şi curbe (traducere din limba engleză), Editura Tehnică, Bucureşti, 1968.

Starea de solicitare în zona de rezemare a rezervoarelor cilindrice pe fundații rigide. Studiu teoretic

Rezumat

Lucrarea expune două moduri de analiză a stărilor de solicitare dezvoltate în zona de îmbinare a corpurilor cilindrice ale rezervoarelor verticale cu fundurile rezemate pe fundații rigide din beton. Se are in vedere teoria cu momente încovoietoare, utilizând ecuațiile de continuitate a deformațiilor - deplasări radiale şi rotiri.

