
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LXV
No. 3/2013 28 - 36 Seria Tehnică

The Utility of Using S-Functions to Define
Complex Elements

Costin Daniel Lupu, Boris Siro, Cornel Ianache

Universitatea Petrol-Gaze din Ploieşti, Bd.Bucureşti, nr. 39, Ploieşti
e-mail: costindaniellupu@yahoo.com; bsiro@upg-ploieşti.ro; cianache@upg-ploiesti.ro

Abstract

In Simulink/SPS simulation diagrams are complex blocks such as electrical motor drives. Usually, these
blocks have a mask and relatively simple dialog boxes, but behind them are hidden a multitude of
Simulink blocks that, based on specific functioning equations, simulate (with a few simplifying
assumptions) the operation of that diagram element. Using S-Functions bring a significant simplification
to the definition of some of these complex diagram elements.

Key words: simulation, simulation block definition, simplifying complex elements.

Introduction

The utility of simulating, in the case of complex process diagrams, is well known, and as
simulation environments, Simulink is the dedicated program for this from the MATLAB
programming environment. All the Simulink derivatives such as SPS (SimPowerSystems),
SimMechanics and others, have very well equipped block libraries, but Simulink (of a higher
version) has a specific library named User-Defined Functions that can be used to define, among
others, Embedded MATLAB Functions and S-Functions, that can allow the user to customize a
specific block, such as the block for an electrical drive motor, although it is predefined in a
certain form, in the Machines library of SPS.

Because the example of an electrical drive motor was considered,
maybe because of the authors’ specialty, this example will be
attended in the following, although as a diagram element, it can
be replaced with a complex mechanical, hydraulic, thermic etc.
element in a corresponding simulation diagram.

For example, the icon of an asynchronous machine, extracted
from the “Machine” SPS library is shown in Figure 1, but behind
it there is a differential equations system that defines, with a few
simplifying assumptions (generally admissible in studies
regarding this type of electrical machine), such as:

Asynchronous Machine
SI Units

Tm m

A

B

C

a

b

c

Fig. 1. The asynchro-
 nous machine icon

The Utility of Using S-Functions to Define Complex Elements 29

()

() ,0

;0

;

;

drr
qr

qrr

qrr
dr

drr

qs
qs

qssqs

ds
ds

dssds

dt
d

iR

dt
diR

dt
d

iRU

dt
diRU

Ψ−+
Ψ

+=

Ψ−+
Ψ

+=

Ψ+
Ψ

+=

Ψ−
Ψ

+=

ωω

ωω

ω

ω

 (1)

in which the first 2 equations refer to the asynchronous machine stator (“s” indices), and the last
2 equations refer to the rotor circuit (“r” indices), the machine’s rotor circuit being considered a
closed circuit (so Ur = 0); the stator/rotor equations system is completed with the equation for
the electromagnetic torque (in instantaneous values):

 ()dsqsqsdse iipm Ψ−Ψ= 5.1 , (2)

and eventually with the linking equations between the magnetic flow and currents (admitting for
a linear relation between the two measurements):

.;
;;
;;

mrrmss

qsmqrrqrdsmdrrdr

qrmqssqsdrmdssds

LLLLLL
iLiLiLiL
iLiLiLiL

+=−−+=

+=Ψ−−+=Ψ

+=Ψ−−+=Ψ

σσ

 (3)

All equations are written in an orthogonal system of axis (d, q, 0) that rotates with an angular
velocity ω; ωr = p* ωm , where p represents the number of pole pairs of the asynchronous
machine and the other parameter is the rotor’s angular velocity; the rest of the notations are
specific to the asynchronous machine and are of no particular importance to the following (the
rotor measurements are considered reported to the machine’s stator).

Usually, to the previous equations, that are considered to be part of the “electrical component”
of a drive, must be added the “mechanical component” of the
drive, but the detailed presentation of the previous relations
shows that the icon from Figure 1, that has input/output ports
for yielding the values of the output measurements, must have
the input signals travelling a complex chain of Simulink blocks
that will always respect the equations (1) … (3). Forming such
a chain of blocks is always complicated, and after forming it,
some optimisations/adjustments must be made (regarding the
necessary memory, computing time etc.) that can prove to be
more complex than the first phase. The given block icon is
associated, usually, with a dialog box that allows for entering
the required work parameters, but also some specific elements
(the initial values of the parameters, if the asynchronous
machine is with a wound rotor or a squirrel-cage rotor, etc.).
For example, the asynchronous machine has the dialog box
presented in Figure 2. Basically, it is not required to detail
other aspects from the point of view of the subject, but the most
important fact that must be taken into consideration is that
bringing the block in the work (simulation) space, the user is
free from the work of constructing the asynchronous machine
according to a certain equations/relations system.

Fig. 2 The dialog box for the
icon in Figure 1

Costin Daniel Lupu, Boris Siro, Cornel Ianache 30

On the other hand, once the block is brought to the works space (meaning, taken from the
corresponding library of blocks), basically, it can no longer be modified and put back in the
library. So, if the asynchronous machine needs to have the addition of the current discharge
effect (this element is specific to the asynchronous machine with squirrel-cage rotor with tall
bars) by properly modifying the equations system (1)…(3), or the transversal magnetic
saturation effect for more in depth studies or a more realistic modelling of the machine, then
these modifications cannot be done on that specific block. Additionally, as an example, inside
the same block there is a possibility to consider the magnetic saturation of the machine’s iron,
but this element is indecipherable (especially designed by the MathWorks corporation),
although all other elements can be readable, after a few preliminary operations.

Finally, a customisation by reformatting the asynchronous machine block leads to the idea of
forming a user created block for the asynchronous machine that can have the desired elements.
Earlier, as a talking point, the block of an asynchronous machine was considered, but any other
type of element (mechanical, hydraulic etc.) can replace it, without any of the conclusions
needing any major modifications.

Using S-Functions

Basically, there are two options to form customised blocks inside the Simulink simulation
environment: creating Embedded MATLAB blocks or S-Function blocks, both found in the
User-Defined Functions library. An S-Function block allows the user to embed a certain
algorithm that can be used in conjunction with other Simulink blocks.

In fact, specifically speaking, an S-Function block represents a description of a programming
language for a Simulink block, written in Matlab, C, C++, Ada or Fortran, each model with its
own specific syntax.

The User-Defined Function library (in MATLAB, version 7.4) contains 3 types of S-Function
blocks:
• Level-2 M-File S-Function;
• S-Functions;
• S-Functions Builder.

The last 2 types allow for the use of the C programming language, while the last type allows for
the automated generation of C language code for S-Functions; the first type refers to generating
code in M language (MATLAB’s proprietary language). Because C cannot be processed by
MATLAB, the program compiles this type of S-Functions as MEX-files using the MEX utility
from MATLAB.

If there is a program using C language, saved with the name NUME.c, then for it to be
compatible with a S-Function block from Simulink, the command mex NUME.c must be run
inside the command window from the MATLAB interface, thus creating an additional file
named NUME.mexw32 that makes the link between C language and M language.

An advantage of using S-Functions is that it can construct a multipurpose block, being used
several times inside a model, modifying the block parameters each time.

It was mentioned previously that the customizable blocks follow closely the programming
language of Simulink blocks. To this extent, the following phases are found:
• initialization phase;
• setting the correct sample-time;
• calculating the outputs at each major time-step;
• refreshing the discrete states at each major time-step;

The Utility of Using S-Functions to Define Complex Elements 31

• the integration phase, which is applied to the models with continuous states and/or zero-
crossings without samples; if there are continuous states, then Simulink takes in the output
and the derivative formation of the S-Function at the minor time-step.

Level-2 M-File S-Functions represent a syntax that resembles with the C language syntax, while
the S-Function block, although it operates in stages similar to the first type, its code is generated
with C language syntax.

The S-Function Builder block creates a C-MEX S-Function starting from C code, with multiple
input/output ports and a number of scalar, vector and matrix parameters. The input/output ports
can propagate Simulink signals and one-dimensional or bidimensional complex signals. This
block also supports discrete and continuous real states, so this block can be considered as the
most evolved S-Function block.

The Builder allows for the fast and simple creation of an S-Function, the user setting the
input/output ports and the system states, the type and dimensions and the mathematical
equations that define the S-Function. The graphical interface of the S-Function Builder is shown
in Figure 3.

This block contains (in the MATLAB 7.4 version) several tabs (Initialization, Data Properties,
Outputs, Continuous Derivatives, Discrete Update, among the most important ones) that allow
for defining the S-Function by completing and operating the fields found within each tab. After
the complete definition of the S-Function, it can be used as any other block inside a Simulink
model. This option eliminates any difficulty of editing an S-Function by using the correct
language and syntax in accordance with a specific programming language. The Build button
(fig. 3, top-right corner) leads to the creation of the S-Function.

Fig.3 The Graphical interface for the S-Function builder block.

Costin Daniel Lupu, Boris Siro, Cornel Ianache 32

Creating the Asynchronous Machine Block Using S-Functions

At its core, an S-Function has a set of call-back methods (their number is relatively large) that
execute the tasks for every stage of simulation. During a model’s simulation, at each stage of the
simulation, Simulink calls the most appropriate method for each S-Function block from inside
that model. Based on this general work program, template S-Functions can be created for M and
MEX file types.

As with the case of a normal SPS block, creating an S-
Function block for an asynchronous motor can start with
creating the mask or the dialog box, which is very useful to
the user and can be seen in Figure 4.

Creating this dialog box is the same as for any other Simulink
block, and it isn’t different from the mask of the
asynchronous machine block take out from the SPS library
(done especially so it can be easier to be compared), but it
was constructed according to the user’s needs and
specifications. Thus, there are present some pre-set motors
and some fields used to insert some motor parameters and
initial conditions.

The created S-Function can use a pre-set type of
asynchronous machine, or any other asynchronous machine
with specific parameters.

The source code for the S-Function contains more specific
details for the type of the asynchronous motor, according to a specific template. For example,
the setup function for the block has the following code:

function setup(block)
 block.NumInputPorts = 3;
 block.NumOutputPorts = 21;
 block.SetPreCompPortInfoToDefaults;
 block.SampleTimes = [-1 0];
 block.NumContStates = 6;
 block.RegBlockMethod('Outputs', @Output);
 block.RegBlockMethod('InitializeConditions', @InitConditions);
 block.RegBlockMethod('Derivatives', @Derivative);

and converting the parameters in pu has the following code :

%% Transformation in pu %%
web_psb = 2*pi*fn;
base_power = Pn/3;
base_voltage = Vn/sqrt(3);
base_current = base_power/base_voltage;
base_icurrent = base_current*sqrt(2);
base_impedance = base_voltage/base_current;
base_resistance = base_voltage/base_current;
base_inductance = base_impedance/(2*pi*fn);
base_speed = web_psb/PolePairs;
base_torque = (base_power*3)/base_speed;
inertia_constant = ((1/2)*H*(base_speed^2))/Pn;
F_pu = (F*base_speed^2)/Pn;
Nb_pu = base_speed;
Tb_pu = base_torque;
Vb_pu = 2*base_power/base_icurrent;

Fig.4 Asynchronous machine
dialog box.

The Utility of Using S-Functions to Define Complex Elements 33

ib_pu = base_icurrent;
phib_pu = (sqrt(2)*base_voltage)/web_psb;
Rs = Rs0/base_resistance;
Rr = Rr0/base_resistance;
Lls = Lls0/base_inductance;
Llr = Llr0/base_inductance;
La_pu = ((Pn*fn)/(Vn^2))*((Llr0*Lls0*Lm)/(Llr0+Lls0+4*Lm)) *

 ((8*pi)/(Lls0+Llr0));

in which the equations (prepared above) are mentioned according to which the conversion is
done, so that the code stages and sequences can be better highlighted; if need be, each line of
code can be commented so that it contains all de necessary details. Finally, the connections of
the input and output ports for the S-Function block that are hidden under the mask from Figure
4 can be seen in Figure 5.

Figure 5 shows that there are 21 outputs for the asynchronous machine represented with an S-
Function, identical to the number for the block from the SPS library; actually the diagram from
Figure 5 is modelled (using an S-Function) after the asynchronous machine block from SPS
library, so that a comparison between the two can be more easily drawn.

Comparison between the Asynchronous Machine Block from the
SimPowerSystems (SPS) Library and the S-Function Block

The comparison between the asynchronous machine block from the SPS library and the one
represented by an S-Function is done by simultaneously simulating the two blocks.
The model for that simultaneous simulation is shown in Figure 6.

Fig. 5. Input/output connections diagram for the asynchronous machine S-Function

Costin Daniel Lupu, Boris Siro, Cornel Ianache 34

The graphs can be shown on the scopes from the diagram in Figure 6 for multiple signals, but
for the moment, only the graphs for the electromagnetic torque (fig. 7) and speed (fig. 8) are
shown below.

Figures 7 and 8 show that the results of simulating the 2 block versions for an asynchronous
machine are practical identical, so the S-Function version can be used any time instead of the
block from the SPS library. This can be considered as a very important concept, because the
asynchronous machine block from the SPS library can be used exclusively with other blocks
from the SPS library which, however vast it may be, it still has its limitations. Moreover, the
customization of the asynchronous machine block of type S-Function can be extended as to
consider the effect of current discharge (that can affect the rotor phase’s resistance and
reactance), the effect of longitudinal/transversal magnetic saturation, that are already not

Fig. 6. The model used to simultaneously simulate the SPS block and S-Function for the
asynchronous machine

Fig. 7. Electromagnetic torque variation for the asynchronous machine starting, using the SPS library
block and the S-Function block

Fig. 8. The rotational speed graphs for the asynchronous machine according to the two types of block.

The Utility of Using S-Functions to Define Complex Elements 35

included (these are effects that happen inside a real asynchronous machine) in the block from
the SPS library.

An Interconnection with Maple

The MapleSoft Company developed several packages to extend the use of their Maple products.
Among these are: MapleSim, MapleSim Connector, BlockImporter, Maple Toolbox for
MATLAB.

The first product is designed to model physical systems, being based on the symbolic
technology used by Maple and can be considered an equivalent for Simulink from MATLAB,
although some considerable differences can be noted in regards to the computational method
used and from the point of view of the graphical user interface. Yet the two products are not
completely incompatible, because a line of communication can be made between Simulink and
MapleSim using the MapleSim Connector and BlockImporter products.

MapleSim Connector can create S-Functions compatible with Simulink and BlockImporter has
a somewhat inverse function, importing a model from Simulink and converting it to
mathematical expressions specific to Maple and MapleSim, that can be processed and simplified
and returned to Simulink.

There already are transfer options for Maple ↔ LabVIEW, as there are corresponding
communication channels for MATLAB ↔ LabVIEW, so real systems can be modelled,
simulated and debugged in the three large programming environments on a wide range of
domains.

Conclusions

The S-Function is a type of block for the Simulink simulation environment from MATLAB that
can be conveniently customised for any dynamic element (electrical, mechanical, hydraulic or
thermic), using a set of default S-Function call-back methods that execute each simulation
stage’s task for the given element. In previous examples, it was talked about an asynchronous
electrical motor (a subject closer to the authors’ expertise), but any dynamic element can be
considered, defined by a system of relations and differential equations. The S-Function Builder
block allows for the automatic redacting and editing of S-Functions, according to a necessary
template, straight in the C environment, although an S-Function can generally be created in
different environments, such as MATLAB, C, C++, Ada or Fortran.

The main aspect of using an S-Function is that it can use any Simulink block from a block
diagram, however complex, and when using the Builder option, it would be even easier to create
a block with multiple input and output ports and with a number of scalar, vector or matrix
parameters.

Through a relatively recent breakthrough that allows for the possibility of communicating with
the Maple environment, there is the option of passing an entire model from Simulink to Maple,
and converting it into mathematical expressions specific to Maple and MapleSim, that can be
returned to Simulink as S-Functions.

Customizing the definition of dynamic elements, of different types and eventually forming the
user’s own library with these elements can be considered the main advantage of using S-
Functions.

Costin Daniel Lupu, Boris Siro, Cornel Ianache 36

References

1. L u p u , C . D . – Introducere in folosirea funcţiilor Embedded MATLAB şi S-Function la simularea
unor acţionări electomecanice cu motoare asincrone, Proiect de diplomă, coordinator: prof.dr.ing.
Boris Siro, UPG Ploieşti, 2011.

2. * * * – Overview of S-Function/How S-Function work, Simulink Documentation.
3. * * * – Creating Block Mask/Mask Editor, Simulink Documentation.
4. * * * – Writing S-Function in C/S-Function Builder Dialog Box, Simulink Documentation.
5. * * * – http:/www.Maplesoft.com/products/maple/features/feature_detail.aspx?fi d=6721.
6. * * * – Blocks - by Category/Machines/Asynchronous Machine, SimPowerSystems Documentation.
7. * * * – External Interfaces/Calling C and Fortran Programs from MATLAB, MATLAB

Documentation.

Utilitatea folosirii S-functions la definirea
unor elemente complexe

Rezumat

În schemele de simulare din Simulink/SPS există blocuri complexe cum ar fi motoarele electrice de
acţionare. De regulă, aceste blocuri au masca şi boxa lor de dialog relativ simple, dar în „spatele”
acestora se ascund o multitudine de blocuri Simulink, care pe baza ecuaţiilor de funcţionare specifice,
realizează (cu anumite ipoteze simplificatoare) funcţionarea elementului de schemă respectiv. Folosirea
S-functions aduce o simplificare semnificativă în definirea unor astfel de elemente complexe de schemă.

