Calculation of Some Geometric Elements of Conical Wheels with Circularly Arched Teeth

Niculae Grigore
Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti, 39, Ploieşti
e-mail: ngrigore@upg-ploiesti.ro

Abstract

This paper shows the method for calculating the main geometric elements of the conical gear with circularly arched teeth type 528 Saratov.

Key words: wheel, gear, module, division diameter, the head diameter

General Considerations

Wheels with slanted teeth are used in conditions of peripheral velocities less than $12 \mathrm{~m} / \mathrm{s}$, and wheels with round teeth are recommended and used for velocities between 3 and $40 \mathrm{~m} / \mathrm{s}$ (fig. 1) [1, 2].
For greater velocities, the teeth are rectified after the thermal improvement treatment, in which case wheels with circularly arched teeth are used.

Conic gears with round teeth function silently, have a great degree of coverage, high durability to usage, and allow the making of high engagement ratios compared to other types of conic gears, have a small gauge and reduced axial forces.

These types of concurrent conic gears are usually orthogonal.
The slanting direction of the teeth (left-right or reverse, as seen from the tip of the wheel's cone (fig. 1) is established according to the rotation direction of the leading wheel, such that the effect of the axial force (axial component) is to increases the matching of the teeth, avoiding any blockages [3, 4].
The slanting angles of the teeth are: the exterior dividing slating angle, β_{e}, the interior dividing slating angle, β_{i}, the angle between a radial perpendicular line that intersects the dividing line of a flank of the cog of the plane wheel of defining reference, in a point found at the exterior, interior extremity of the teeth and the tangent at that point to the dividing line of the flank of the teeth of the plane wheel (fig. 2).

The principle that lies at the base of the processing of conic wheel with circularly arched teeth consists of generating a single cog of the plane wheel through an imaginary plane wheel materialized through the teething tool (fig. 3) [5].

Fig 1. Conic gears with: a - round teeth; b-slanted teeth

Fig.2. The exterior dividing slanting angle β_{e} and the interior dividing slanting angle β_{i}

Calculation of Some Geometric Elements of Conical Wheels with Circularly Arched Teeth and Constant Height 528 Saratov

The main geometric elements of the conic gear with circularly arched teeth are shown in Figure 4 and are determined as such:

- the exterior (frontal) module: m;
- the coefficient for the width of the teeth:

$$
\begin{equation*}
k_{b}=\frac{R}{b}=(3 \ldots 4) \tag{1}
\end{equation*}
$$

where R is the (exterior) length of the division generator, and b is the width of the teeth;

- the coefficient for the radial movement of the pinion profile:
- of the pinion (1):

$$
\begin{equation*}
x_{r 1}=0,49 \cdot \cos \llbracket\left(1-\frac{1}{u^{2}} \rrbracket\right) \tag{2}
\end{equation*}
$$

where β is the median slanting angle, and u is the engagement ratio;

- at the wheel (2):

$$
\begin{equation*}
x_{r_{2}}=-x_{r_{1}} ; \tag{3}
\end{equation*}
$$

Fig. 3. Plane wheel of the circularly arched teeth

- angle of the dividing cone:
- of the pinion (1):

$$
\begin{equation*}
\delta_{1}=\operatorname{arctg}\left(\frac{1}{u}\right) \tag{4}
\end{equation*}
$$

- of the wheel (2):

$$
\begin{equation*}
\delta_{2}=\operatorname{arctg} u \tag{5}
\end{equation*}
$$

- (interior) module:

$$
\begin{equation*}
m_{t}=m=\frac{k_{k}-1}{k_{2 j}} \tag{6}
\end{equation*}
$$

- exterior division slating angle:

$$
\begin{equation*}
\sin \beta_{e}=\frac{2 \cdot \kappa_{i} \quad 1}{2 \cdot \kappa_{b}} \cdot \sin \beta+\left[1-\left(\frac{2 \cdot \kappa_{i \alpha}}{2 \cdot \kappa_{b}}\right)^{2}\right]=\frac{R}{D_{s}} \tag{7}
\end{equation*}
$$

where D_{s} is the nominal diameter of the tool head [6];

- interior division slating angle:

$$
\begin{equation*}
\sin \beta_{i}=\frac{2 \cdot k_{i}-1}{2 \cdot\left(k_{i}-1\right)} \cdot \sin \beta+\frac{3-4 \cdot k_{k}}{4 \cdot\left(k_{k}-1\right)} \cdot \frac{R}{D_{i} \cdot k_{i}} \tag{8}
\end{equation*}
$$

Fig 4. Geometric elements of conic gears with circularly arched cogs of constant height

Calculation of Control Elements for Circularly Arched Teeth and Constant Height 528 Saratov Model

- \quad cog frontal division arc:
- at the pinion (1):

$$
\begin{equation*}
s_{t 1}=\frac{\pi m}{2}+2 \cdot \frac{x_{r 1} \cdot \operatorname{tg} \alpha_{n}}{\cos \beta_{*}}, \tag{9}
\end{equation*}
$$

where α_{n} is the normal division pressure angle $\left(\alpha_{n}=20^{\circ}\right)$;

- at the wheel (2):

$$
\begin{equation*}
y_{t 2}=\pi-T A-s_{t 1} ; \tag{10}
\end{equation*}
$$

- intermediate coefficient:

$$
\begin{equation*}
G_{x}=\frac{1}{2} \cdot \sin \beta_{s} \cdot \cos \beta_{s} ; \tag{11}
\end{equation*}
$$

- reduction coefficient of the cog:
- at the pinion (1) :

$$
\begin{align*}
& k_{1}=1-\frac{s_{t 1}}{R} \cdot G_{2} ; \tag{12}\\
& k_{2}=1-\frac{s_{t 2}}{R} \cdot G_{2} ; \tag{13}
\end{align*}
$$

- central half-angle corresponding to the girth of the cog in the normal section:
- at the pinion (1) :

$$
\begin{equation*}
\omega_{1}=\frac{g_{t 1}}{d_{1}} \cdot \cos ^{3} \beta_{i} \cdot \cos _{1} \tag{14}
\end{equation*}
$$

- at the wheel (2):

$$
\begin{equation*}
\omega_{2}=\frac{v_{i z}}{d_{2}} \cdot \cos ^{5} \beta_{e} \cdot \cos _{2}, \tag{15}
\end{equation*}
$$

where d_{1} is the division diameter of the pinion $\left(d_{1}=m z_{1}\right)$, and d_{2} is the division diameter of the wheel $\left(d_{2}=m z_{2}\right)$;

- coefficients calculation:
- at the pinion (1) :

$$
\begin{equation*}
k_{11} \cong 1-\frac{\omega_{1}^{2}}{6}: k_{21} \cong \frac{\omega_{2}}{4} ; \tag{16}
\end{equation*}
$$

- at the wheel (2):

$$
\begin{equation*}
k_{12} \cong 1-\frac{\omega_{\mathrm{N}}^{2}}{6}: k_{22} \cong \frac{\omega_{\mathrm{q}}}{4} \tag{17}
\end{equation*}
$$

- $\quad \operatorname{cog}$ width measured on a constant chord at the exterior extremity:
- at the pinion (1):

$$
\begin{equation*}
y_{c m 1}=k_{11} \cdot y_{t 1} \cdot k_{1} \cdot \cos \beta_{e} ; \tag{18}
\end{equation*}
$$

- at the wheel (2):

$$
\begin{equation*}
s_{\mathrm{omg}}=k_{1 \mathrm{~s}} \cdot s_{\mathrm{eq}} \cdot k_{2} \cdot \operatorname{eas} f_{\varepsilon} ; \tag{19}
\end{equation*}
$$

- sharpness of the cog:
- at the pinion (1):

$$
\begin{equation*}
\Lambda h_{1}=k_{21} \cdot s_{t 1} \cdot \text { easfere } \tag{20}
\end{equation*}
$$

- at the wheel (2):

$$
\begin{equation*}
\Lambda h_{2}=k_{2 n} \cdot S_{62} \cdot \operatorname{cas} f_{\varepsilon} ; \tag{21}
\end{equation*}
$$

- height measured at the constant chord:
- at the pinion (1):

$$
\begin{equation*}
\boldsymbol{h}_{\mathrm{sm} 1}=\boldsymbol{h}_{\mathrm{a} 1}+k_{\mathrm{R}_{1}} \cdot \Lambda \boldsymbol{h}_{1} ; \tag{22}
\end{equation*}
$$

- at the wheel (2):

$$
\begin{equation*}
h_{\mathrm{cmz}}-h_{a t}+\dot{k}_{\mathrm{z}} \cdot \Delta h_{\boldsymbol{x}_{z}} ; \tag{23}
\end{equation*}
$$

$h_{a 1}$ and $h_{a 2}$ represent the height of the (division) head of the cog for the pinion and the wheel having the mathematical expressions:

$$
\begin{align*}
& \boldsymbol{h}_{a 1}=\left(\boldsymbol{h}_{a}^{*}+x_{r 1}\right) \cdot m_{i} \tag{24}\\
& \boldsymbol{h}_{a 2}=\left(\boldsymbol{h}_{a}^{*}+x_{r 2}\right) \cdot m_{t} \tag{25}
\end{align*}
$$

where $h_{a}{ }^{*}$ is the coefficient of the reference hard of the $\operatorname{cog}\left(h_{a}{ }^{*}=1.0\right)$.

Conclusions

Considering the special advantages of these types of gears (high coverage degree, etc.) this paper shows the method for calculating the main geometric elements of conic wheel with circularly arched cogs of constant height 528 Saratov.

The rigorous calculations of the control elements for the circularly arched cogs of constant height must also be noted.

References

1. Chişiu, A. et al. - Organe de maşini, Editura Didactică şi Pedagogică, Bucureşti, 1981.
2. Ruzicka, V. - Controlul roților dințate, Editura Tehnică, Bucureşti, 1959.
3. Guja, N.-Angrenaje conice şi hipoide, Editura Tehnică Bucureşti, 1990.
4. Grigore, N. - Organe de maşini. Transmisii mecanice, Editura Universității din Ploieşti, 2003.
5. Grigore, N. - Organe de maşini. Angrenaje conice şi melcate, Editura Universității din Ploieşti, 2010.
6. Lă zărescu, I - Calculul şi construcția sculelor aşchietoare, Editura Tehnică, Bucureşti, 1961.

Calculul unor elemente geometrice ale roților conice cu dantura în arc de cerc

Rezumat

Angrenajele conice cu dantura în arc de cerc au o largă utilizare în construcția de maşini datorită unor avantaje deosebite ca : funcționare silențioasă, grad mare de acoperire, etc. În lucrare se prezintă modul de calcul al principalelor elemente geometrice ale roților conice cu dinți în arc de cerc de inălțime constantă 528 Saratov. Lucrarea are o aplicabilitate practică imediată atât în ce priveşte proiectarea angrenajelor conice cu dantură în arc de cerc cât şi privitor la repararea utilajelor tehnologice care au in componența lor angrenaje conice.

