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Abstract 

In the paper a method for establishing and solving the movement equation in the case of the plane 

mechanisms is presented. The method is based on the expressing of the dynamic equilibrium in 

instantaneous powers of all the forces and moments that work on the component links of the mechanism. 

The variation of the angular speed of the driving crank is determined by numerically integration of the 

movement equation using the finite differences method. Finally, some simulation results in the case of a 

quadrilateral mechanism are shown.  
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Introduction  

The setting of the dynamic response of the mechanisms for different functioning regimes and 

loading states represents one of the most important tasks in the phase of their design. In the case 

of the plane mechanisms having the degree of mobility equal to one, when the leader element is 

a crank, the setting of the dynamic response involves the establishing and the solving of the 

dynamic movement equations of these mechanisms [1]. By solving the movement equations the 

variation of the angular speed of the driving cranks can be determined. It is known that if in the 

regime phase the angular speed of the driving crank has large variations around its nominal 

value then appear significant additional variable loads of the links and of the joints of the 

mechanism [2, 3].  

In this paper a method for establishing and solving the movement equation in the case of the 

plane mechanisms with one degree of mobility, when the leader element is a crank, is 

presented. The method is based on the expressing of the dynamic equilibrium in instantaneous 

powers of all the forces and moments that work on the component links of the mechanism. The 

variation of the angular speed of the driving crank is determined by numerically integration of 

the movement equation using the finite differences method.  

Theoretical Considerations and Verification Results  

In Figure 1 the cinematic scheme of a plane mechanism with one degree of mobility, when the 

leader element is a crank, is presented. 1  is the driving crank angle; 1  and 1  are the angular 
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speed and the angular acceleration, respectively, of the driving crank; njC j ,1,   are the mass 

centers of the component links; mM  is the motor moment; jF  and njM j ,1,  , are the 

resultant forces and the resultant moments, respectively, corresponding to the external forces 

and moments (weight forces, forces and moments of technological resistance) that work on the 

component elements njj ,1,  ; 
jCjij amF  , and jCij j

IM  , nj ,1 , are the resultant 

inertial forces and moments corresponding to the component elements njj ,1,  , where: jm  is 

the mass of the j element; 
jCI  is the mass moment of inertia corresponding to the j element; 

jCa  is the acceleration of the mass center of the j element; j  is the angular acceleration of the 

j element. 

 

Fig. 1. Plane mechanism with one degree of mobility 

 

The dynamic equilibrium in instantaneous powers of all the forces and moments that work on 

the component links of the mechanism can be expressed with the following relation: 
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The components of the speeds njv
jC ,1,  , on x and y axes and the angular speeds njj ,2,   

can be calculated by deriving with respect to time the variation functions corresponding to the 

coordinates of the mass centers njyx
jj CC ,1,,  , and to the angles njj ,2,   (fig. 1), 

respectively, with the following relations [4,5]: 
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The accelerations nja
jC ,1,  , of the mass centers njC j ,1,  , and the angular accelerations 
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njj ,2,  , of the component elements njj ,2,  , that appear in the expressions of the 

resultant inertial forces ijF  and of the inertial moments ijM , respectively, can be calculated 

with the following relations, obtained by deriving with respect to time the variation functions in 

relations (2) and (3): 
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By considering that the motor moment mM  varies depending on 1  according to the following 

relation: 

 1 BAMm  (6) 

where: A and B are two constants whose values depend on the type of the motor and the 

transmission used and by taking into account the relations (2), (3), (4) and (5), the relation (1) 

becomes: 
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where: jxF  and jyF  are the components of the force jF  on x and y axes, respectively. 

The movement equation (7) has been numerically integrated using the finite differences method 

[1,5,6]. In this case the infinitesimal differences 1d  and 1d  have been replaced by the 

following finite differences: 

 














ii

ii

,11,11

,11,11
 (8) 

where: i,1  and 1,1  i  are the values of the angle 1  for two successive positions of the driving 

crank and i,1  and 1,1  i  represent the values of the angular speed 1  corresponding to the 

angles i,1  and 1,1  i . 

Considering that: 
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then the value i,1  of the angular acceleration 1  corresponding to the angle i,1  can be 

calculated with the following relation: 
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By introducing the following notations for the values of the derivatives of the functions 

)(),( 11 
jj CC yx  and )( 1 j  corresponding to the angle i,1 : 
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then the values of the derivatives 
jCx , 

jCy  and j  (in relations (4) and (5)) corresponding to 

the angle i,1  can be calculated with the following relations: 
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By taking into account the relations (10), (11) and (12) in the evaluation corresponding to the 

angle i,1  of the terms that appear in the movement equation (7) the following equation is 

obtained: 
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In relation (14), ijxF . , ijyF .  and ijM .  are the values of the forces jxF  and jyF  and of the 

moment jM , respectively, corresponding to the angle i,1 . 

Starting from the equation (13) the following computing recursive relation is obtained: 
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The method presented has been applied in the case of a quadrilateral mechanism (fig. 2). To 

this end a simulation program has been developed using the Maple programming language that 

has powerful symbolic computation functions [7]. 

 

 

Fig. 2. Quadrilateral mechanism 

 

The following elements are considered to be known: 

 the dimensions of the component links: OA=0.2 m; AB=0.5 m; BC=0.55 m; OC=0.75 m. 

The mass centers: 321 ,, CCC  are on the middle of the corresponding links; 

 the component links are of bar type, with constant cross section. There are known the values 

of the linear mass of the links: kg/m5.51 q , kg/m42 q  and kg/m75.33 q . The values 

of the mass moments of inertia of the component links have been determined with the 

relations: 3,1,12/2  ilmI iiCi
, where the masses 3,1, imi , are given by: 

3,1,  ilqm iii , 3,1, ili , being the lengths of the component links. In the case of the 

leader crank to the value 12/2
111
lmIC   was added the value of the mass moment of inertia 

of the flywheel, that in this case is: 2mkg1 vI ; 

 the technological moment ruM  has the following expression: 
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where: mN250 rM ; d1  and a1  are the values of the crank angle 1  corresponding to 

the two extreme positions of the rocker 3, when the link 2 is in the prolongation of the crank 

and when overlap the crank, respectively. In the considered case 415.441  d  and 

942.2181  a ; 

 the variation of the motor moment mM  is given by: 12.0301 mM  for rad/s51   and 

120400 mM  for rad/s51  . 

The variation functions depending on 1  corresponding to the angles 2  and 3  (fig. 2) have 

been determined by solving the following system of equations obtained by projecting on x and y 

axes the independent contour: OCBAO   [4]: 
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where: OAl 1 ; ABl 2 ; BCl 3 ; OCl 0 . 

Then, the coordinates of the mass centers 3,1,, jyx
jj CC , can be calculated with the following 

relations: 
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The analytical expressions of the derivatives in relation (11) have been calculated by deriving 

with respect to 1  the variation functions corresponding to the coordinates of the mass centers 

3,1,, jyx
jj CC , and to the angles 2  and 3 , respectively, using the derivation function diff in 

Maple program [7]. 

The recursive calculus in relation (17) was started with the value rad/s1.01  . 

In fig. 3 the variation of the angular speed 1  for five cinematic cycles is presented. In fig. 4 

the variation of the angular speed 1  in the fourth cinematic cycle, when this variation is 

already stabilized, is presented. 

 

 
Fig. 3. The variation of the angular speed 1  for five cinematic cycles 

 

 

Fig. 4. The variation of the angular speed 1  in the fourth cinematic cycle 
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Conclusions 

In this paper a method for establishing and solving the movement equation in the case of the 

plane mechanisms with one degree of mobility, when the leader element is a crank, have been 

presented. The method presented is based on the expressing of the dynamic equilibrium in 

instantaneous powers of all the forces and moments that work on the component links of the 

mechanism. The variation of the angular speed of the driving crank has been determined by 

numerically integration of the movement equation using the finite differences method. The 

results obtained with the simulation program developed in the case of a quadrilateral 

mechanism highlight the stability of the method used for the integration of the movement 

equation. 
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Asupra stabilirii şi rezolvării ecuaţiei de mişcare 

în cazul mecanismelor plane 

Rezumat 

In articol se prezintă o metodă de stabilire şi rezolvare a ecuaţiei de mişcare în cazul mecanismelor 

plane. Metoda se bazează pe exprimarea echilibrului dinamic în puteri instantanee a tuturor forţelor şi 

momentelor care lucrează pe elementele componente ale mecanismului. Variaţia vitezei unghiulare a 

manivelei conducătoare se determină prin integrare numerică a ecuaţiei de mişcare folosind metoda 

diferenţelor finite. In final, sunt prezentate o serie de rezultate ale simulărilor în cazul unui mecanism 

patrulater. 


