BULETINUL Vol. LXVII

Universitatii Petrol — Gaze din Ploiesti No. 3/2015 87-93 Seria Tehnicd

On the Establishing and Solving of the Movement
Equation in the Case of the Plane Mechanisms

Dorin Badoiu

Universitatea Petrol-Gaze din Ploiesti, Bd. Bucuresti 39, Ploiesti
e-mail: badoiu@upg-ploiesti.ro

Abstract

In the paper a method for establishing and solving the movement equation in the case of the plane
mechanisms is presented. The method is based on the expressing of the dynamic equilibrium in
instantaneous powers of all the forces and moments that work on the component links of the mechanism.
The variation of the angular speed of the driving crank is determined by numerically integration of the
movement equation using the finite differences method. Finally, some simulation results in the case of a
quadrilateral mechanism are shown.
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Introduction

The setting of the dynamic response of the mechanisms for different functioning regimes and
loading states represents one of the most important tasks in the phase of their design. In the case
of the plane mechanisms having the degree of mobility equal to one, when the leader element is
a crank, the setting of the dynamic response involves the establishing and the solving of the
dynamic movement equations of these mechanisms [1]. By solving the movement equations the
variation of the angular speed of the driving cranks can be determined. It is known that if in the
regime phase the angular speed of the driving crank has large variations around its nominal
value then appear significant additional variable loads of the links and of the joints of the
mechanism [2, 3].

In this paper a method for establishing and solving the movement equation in the case of the
plane mechanisms with one degree of mobility, when the leader element is a crank, is
presented. The method is based on the expressing of the dynamic equilibrium in instantaneous
powers of all the forces and moments that work on the component links of the mechanism. The
variation of the angular speed of the driving crank is determined by numerically integration of
the movement equation using the finite differences method.

Theoretical Considerations and Verification Results

In Figure 1 the cinematic scheme of a plane mechanism with one degree of mobility, when the
leader element is a crank, is presented. ¢, is the driving crank angle; o, and ¢, are the angular
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speed and the angular acceleration, respectively, of the driving crank; C;, j =1,n are the mass

centers of the component links; M, is the motor moment; IEJ and I\Wj,jzl,_n, are the

resultant forces and the resultant moments, respectively, corresponding to the external forces
and moments (weight forces, forces and moments of technological resistance) that work on the

component elements j, j=1n; Ifij =-m; -§CJ , and I\Wij =—ICj "€, j=1,n, are the resultant
inertial forces and moments corresponding to the component elements j, j =1,n, where: m; is
the mass of the j element; ch is the mass moment of inertia corresponding to the j element;

ac, is the acceleration of the mass center of the j element; €; is the angular acceleration of the
j element.

Fig. 1. Plane mechanism with one degree of mobility

The dynamic equilibrium in instantaneous powers of all the forces and moments that work on
the component links of the mechanism can be expressed with the following relation:

n n
= i

The components of the speeds ch v =1,n, on x and y axes and the angular speeds o;, j = 2,n

can be calculated by deriving with respect to time the variation functions corresponding to the
coordinates of the mass centers xcj,ycj,jzl,n, and to the angles o;,j=2,n (fig. 1),

respectively, with the following relations [4,5]:

dXCj ‘ do, dxCj

Vo )y =¥e =— . m P oy L
( Cj)x o do, dt (] do, 2
o dye de, dyc,
(VCj)yzij: =0
de, dt do,
. do; do, de;
Pi=® do, dt o do, )

The accelerations ﬁcj N =1,_n, of the mass centers Cj, i =1,_n, and the angular accelerations
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aj,jzﬂ, of the component elements j,j:ﬂ, that appear in the expressions of the

resultant inertial forces Ifij and of the inertial moments M,

with the following relations, obtained by deriving with respect to time the variation functions in
relations (2) and (3):

respectively, can be calculated

N Xc, d*xc,
(acj)x =X, =& J +(’312' 5
do, do; ()
(@ ), =Vc =¢ e, + dzycj
c;)y=Ye, =& do, Ot dg?
. d(P] 2 dz(Pj
€ =0, =g —+0; - — 5
j (p] 1 d(Pl 1 d(P12 ( )

By considering that the motor moment M, varies depending on , according to the following
relation:

M, =A-B-a (6)

where: A and B are two constants whose values depend on the type of the motor and the
transmission used and by taking into account the relations (2), (3), (4) and (5), the relation (1)
becomes:

n dxc. dy. do.
A=B-oy+ Y (Fp-—2+F, - VLI
i} do, do, do, .
n dXe. dyc do.
+ > (m K —L-m Yo = (- —2)=0
; b do; e do, @ do,

where: F;, and F;, are the components of the force F; on x andy axes, respectively.

The movement equation (7) has been numerically integrated using the finite differences method
[1,5,6]. In this case the infinitesimal differences do, and dm, have been replaced by the

following finite differences:

{A(Pl = Qs — Py (8)

AWy =0, — O

where: ¢,; and ¢,;,; are the values of the angle ¢, for two successive positions of the driving
crank and o;; and w,;,, represent the values of the angular speed «, corresponding to the
angles @,; and @y ;,;.

Considering that:

do, do, dp, do,
“TTat dp, dt  dg, ot ®)

then the value ¢,; of the angular acceleration ¢, corresponding to the angle ¢,; can be
calculated with the following relation:
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[ TP )
g = — Oy (10)
, A, :

By introducing the following notations for the values of the derivatives of the functions
Xc, (@1), Ye, (@1) and @;(¢,) corresponding to the angle @, ;:

dx. d?x.
dcjj =t [ d EJJ =1
o P1=P; L 91=01;
dyc. d’ye
; °i J —py | —-|  =ppy (11)
P ) o do; |
17V P1=0q

d(Pl P1=0i : d(Plz P1=0yi U

then the values of the derivatives X‘Cj : 'ycj and @; (in relations (4) and (5)) corresponding to

the angle ¢,; can be calculated with the following relations:

; Oy — Oy
(e Dpr=gy, = 'Tll'@u -t +op,; -t
- Oy — Oy
(ycj)%:% :HA—(pll'(Dl’i - P + o - PP; (12)
.. Oy =0y
((ch )(p1=(plyi zﬁ‘@n -G +(Di2,i -0
1

By taking into account the relations (10), (11) and (12) in the evaluation corresponding to the
angle ¢,; of the terms that appear in the movement equation (7) the following equation is

obtained:

Oy — O 2 _
A_ B * (Dl,i + Sl,i +—" (Dl,i * SZ,i + (Dl,i * S3,i - O (13)
A,
where:
n
Sii :Z(ij.i G +Fyyi P + My -ay) (14)
i1
\ 2 2 2
Sai :Z(_mj‘tij_mj‘pij_lcj -0i) (15)
-1
n
Ssi :Z(_mj T -t —m; - Py - PR — |cj -0 -90;) (16)
=1

In relation (14), F;, F;; and M;; are the values of the forces F;, and F; and of the

moment M ;, respectively, corresponding to the angle o, ;.

Starting from the equation (13) the following computing recursive relation is obtained:
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A
@i = O + % “(-A+B-w; =Sy _(Dlz,i -S3;) (17)
Sy,

The method presented has been applied in the case of a quadrilateral mechanism (fig. 2). To
this end a simulation program has been developed using the Maple programming language that
has powerful symbolic computation functions [7].

Fig. 2. Quadrilateral mechanism

The following elements are considered to be known:

the dimensions of the component links: OA=0.2 m; AB=0.5 m; BC=0.55 m; OC=0.75 m.
The mass centers: C,,C,,C, are on the middle of the corresponding links;

the component links are of bar type, with constant cross section. There are known the values
of the linear mass of the links: g, =5.5kg/m, g, =4kg/m and g, =3.75kg/m. The values

of the mass moments of inertia of the component links have been determined with the
relations: ICi =m -Ii2 /12, 1=13, where the masses m,,i=13, are given by:

m =q,-l,i=13, I,i=13, being the lengths of the component links. In the case of the
leader crank to the value I =m, - 17 /12 was added the value of the mass moment of inertia

of the flywheel, that in this case is: 1, =1 kg-mz;

the technological moment M., has the following expression:

M,, =M, -sin % _2(p1d sin _z(pla (18)

where: M, =250N-m; ¢,, and o,, are the values of the crank angle ¢, corresponding to
the two extreme positions of the rocker 3, when the link 2 is in the prolongation of the crank
and when overlap the crank, respectively. In the considered case ¢4 =44.415 and

¢y, = 218942

the variation of the motor moment M, is given by: M., =301-0.2- ®, for o, <5rad/s and
M, =400-20-w, for w, >5rads.

The variation functions depending on ¢, corresponding to the angles ¢, and ¢, (fig. 2) have

been determined by solving the following system of equations obtained by projecting on x and y
axes the independent contour: O—A-B—-C -0 [4]:
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l,-coso, +1, -coso, +1,-cosep, -1, =0
{1 ¢l ¢, T3 Ps =l (19)

l,-sing, +1,-sing, +1;-sinp; =0

where: |, =0A; I, =AB; I;,=BC; |,=0C.

Then, the coordinates of the mass centers Xe, Ve, j —1,3, can be calculated with the following

relations:

Xc, =0C;-cosq,; Yo, =0C, -sing,
Xc, =l -cos@, + AC, -C0s¢,; Y, =, -sing; + AC, -sin g, 20)
Xc, =l -€0s¢, +1,-cosg, + BC; -cosg,

Ye, =l -sing, +1, -sing, + BC; -sin ¢,

The analytical expressions of the derivatives in relation (11) have been calculated by deriving
with respect to ¢, the variation functions corresponding to the coordinates of the mass centers

X, Ve, j =13, and to the angles @, and ¢, respectively, using the derivation function diff in

Maple program [7].

The recursive calculus in relation (17) was started with the value «, =0.1rad/s .

In fig. 3 the variation of the angular speed ®, for five cinematic cycles is presented. In fig. 4
the variation of the angular speed o, in the fourth cinematic cycle, when this variation is
already stabilized, is presented.
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Fig. 3. The variation of the angular speed o, for five cinematic cycles
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Fig. 4. The variation of the angular speed «, in the fourth cinematic cycle
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Conclusions

In this paper a method for establishing and solving the movement equation in the case of the
plane mechanisms with one degree of mobility, when the leader element is a crank, have been
presented. The method presented is based on the expressing of the dynamic equilibrium in
instantaneous powers of all the forces and moments that work on the component links of the
mechanism. The variation of the angular speed of the driving crank has been determined by
numerically integration of the movement equation using the finite differences method. The
results obtained with the simulation program developed in the case of a quadrilateral
mechanism highlight the stability of the method used for the integration of the movement
equation.
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Asupra stabilirii si rezolvarii ecuatiei de miscare
n cazul mecanismelor plane

Rezumat

In articol se prezintd 0 metoda de stabilire si rezolvare a ecuatiei de miscare In cazul mecanismelor
plane. Metoda se bazeaza pe exprimarea echilibrului dinamic in puteri instantanee a tuturor fortelor §i
momentelor care lucreazd pe elementele componente ale mecanismului. Variagia vitezei unghiulare a
manivelei conducdatoare se determind prin integrare numericd a ecuatiei de miscare folosind metoda
diferentelor finite. In final, sunt prezentate o serie de rezultate ale simuldrilor in cazul unui mecanism
patrulater.



