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Abstract 

In this paper some results concerning the establishing of the variation on a cinematic cycle of the 

equilibrium moment for a plane mechanism using the dynamic model are presented. It is shown that the 

variation of the equilibrium moment in the analyzed case can be very well approximated with the 

variation on a cinematic cycle of the reduced moment corresponding to the dynamic model of the 

mechanism. Some interesting simulation results that highlight the aforesaid for different functioning 

regimes of the mechanism are presented.  
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Introduction 

The equilibrium moment is one of the most important dynamic parameter used for an optimum 

design of the plane mechanisms [1, 2, 3, 4]. Its variation on a cinematic cycle provides useful 

information regarding the motor moment and the influence of different categories of forces and 

moments (weight forces, technological forces and moments, inertial forces and moments) that 

work on the component links of the analyzed mechanism [3, 4, 5].  

In this paper some results concerning the establishing of the variation on a cinematic cycle of 

the equilibrium moment for a plane mechanism using the variation on a cinematic cycle of the 

reduced moment corresponding to the dynamic model of the mechanism are presented. It is 

analyzed the possibility of approximation of the variation of the equilibrium moment in the 

analyzed case with the variation on a cinematic cycle of the reduced moment. The simulations 

carried out highlight the aforesaid for different functioning regimes of the mechanism.  

Theoretical Considerations and Simulation Results  

In figure 1 the cinematic scheme of the analyzed plane mechanism is presented. The following 

elements are considered to be known: 

 the dimensions of the component links: OA=0.06 m; AB=0.3 m; AK=0.1 m; BK=0.24 m;  

KD=0.3 m; DE=0,15 m; m38.0Ex ; m3.0Ey . The mass centers: 541 ,, CCC  are on the 
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middle of the corresponding links and 2C  is on the mass center of the triangle ABK.  

 the mass of the component links: kg;5.11 m kg;72 m  kg;23 m  kg;5.54 m  

kg35 m ; 

 the mass moments of inertia of the links: ;kgm003.0 2

1
CI  ;kgm35.0 2

2
CI  

;kgm12.0 2

4
CI  2

5
kgm03.0CI . The value of 

3CI  is neglected.  

 the technological forces dr
ruF  and st

ruF  (fig. 1) work to the contrary of the speed 
3Cv  of the 

plunger 3 of the mechanism. Their action is cumulated in the following expression of the 

technological force rF : 
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where: 13  is the value of the crank angle 1  when 0
3
Cv ; N1500dr

rF ; N700st
rF ; 

 the technological moment ruM  works to the contrary of the angular speed 5  of the rocker 

5 (fig. 1). Its variation on a cinematic cycle is given by the following expression: 
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where: mN120 rM ; d1  and a1  are the values of the crank angle 1  corresponding to 

the two extreme positions of the rocker 5, when the angle 5  (fig.1) achieves its two 

extreme values: d5  and a5 , respectively. 

 

 
Fig. 1. Plane mechanism 

 

The variation on a cinematic cycle of the equilibrium moment eM  can be obtained by 

expressing the dynamic equilibrium in instantaneous powers of all the forces and moments that 

work on the component links of the mechanism [1], with the following relation: 
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where: 

5,1,  jgmG jj , are the weight forces corresponding to the component links ( 2m/s81.9g  

is the gravitational acceleration);  

5,1,  jamF
jCjij , are the inertial forces, where 

jCa is the acceleration of the mass center 

of the j link;  

}5,4,2,1{,  jIM jCij j
, are the inertial moments, where j  is the angular acceleration of 

the j link;  

jCv  is the speed of the mass center of the j link;  

j  is the angular speed of the j link;  

Bv  is the speed of the point B, where: 
3CB vv   (fig. 1). 

The components of the speeds and of the accelerations of the mass centers 5,1, iCi , on the 

axes of the coordinates system (Oxy) can be determined by deriving with time the expressions 

of the coordinates )( 1
ii CC xx ; 5,1),( 1  iyy

ii CC , with the following relations [6,7,10]: 
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The angular speeds and accelerations 5,4,2,,  jjj , can be determined by deriving with time 

the expressions of the angles 5,4,2),( 1  jj  (fig. 1), with the following relations [10,11]: 
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The coordinates of the mass centers 5,1, iCi , can be calculated with the following relations: 
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where: 
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where: KAB 22
'
2  (fig. 1); 
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By projecting the vector contour 0 BOABOA  on the x and y axes (fig. 1), the following 

system of equations is obtained: 
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By solving the system of equations (13) the unknown parameters 2  and 3s  can be calculated 

from the following relations: 
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The coordinates of the point D, Dx  and Dy , can be determined by solving the following system 

of equations: 
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where the coordinates of the point K have been calculated using the relation (9).  

Then, the angles 4  and 5  can be calculated from the following relations: 
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The relations above have been transposed into a computer program using Maple programming 

language [12] that has powerful symbolic computation functions. For obtaining the analytical 

expressions of the speeds and of the accelerations mentioned above, the derivatives with 

respect to the crank angle 1  of the position parameters in relations (4), (5) and (6) have been 

calculated using the derivation function diff in Maple programming language [12].  
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For the angles d113,  and a1  in relations (1) and (2) have been obtained the following 

values: 18013  , 035.2231  d  and 075.581  a . 

The variation on a cinematic cycle of the reduced moment corresponding to the dynamic model 

of the mechanism from figure 1 can be determined with the following relation [1,8,9]: 
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It can be noticed by comparing the relations (3) and (17) that if the inertial forces and the 

inertial moments are neglected then the following relation is true: rede MM  .  

In figures 2 and 3 the variation on a cinematic cycle of the equilibrium moment eM  and of 

redM  for rad/s101   and rad/s151   is presented. 

 

 
Fig. 2. The variation on a cinematic cycle of eM  and of redM  for rad/s101   

 

 
Fig. 3. The variation on a cinematic cycle of eM  and of redM  for rad/s151   

Conclusions 

In this paper some results concerning the establishing of the variation on a cinematic cycle of 

the equilibrium moment for a plane mechanism using the variation on a cinematic cycle of the 

reduced moment corresponding to the dynamic model of the mechanism have been presented. 

The simulation results presented in figures 2 and 3 highlight the possibility of approximation of 
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the variation of the equilibrium moment in the analyzed case with the variation on a cinematic 

cycle of redM , where redM is the reduced moment. 
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Cercetări privind calculul momentului de echilibrare în cazul unui 

mecanism plan folosind modelul dinamic 

Rezumat 

In articol sunt prezentate o serie de rezultate privind stabilirea variaţiei pe un ciclu cinematic a 

momentului de echilibrare pentru un mecanism plan folosind modelul dinamic. Se arată că variaţia 

momentului de echilibrare în cazul analizat poate fi foarte bine aproximată cu variaţia pe un ciclu 

cinematic a momentului redus corespunzător modelului dinamic al mecanismului. Sunt prezentate câteva 

rezultate interesante ale simulărilor care evidenţiază cele menţionate mai înainte pentru diferite regimuri 

de funcţionare ale mecanismului. 


