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Abstract 
 
It is known that the vast majority of machine components are subjected to cyclic multiaxial stresses. On 
this basis, in recent years numerous theoretical and experimental studies have been carried out in order 
to analize the multiaxial fatigue damage mechanisms. In this context, this paper presents a critical 
analysis of the most important damage parameters used in high cycle fatigue life prediction (finite and 
infinite life). The authors also propose a new damage parameter, which is verified showing good 
correlation with some experimental data from the literature. 
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Introduction 
A large number of studies have been carried out in recent years regarding the damage 
mechanisms under variable multiaxial loading, while the modeling of fatigue crack nucleation 
and propagation has been taken one step closer to reality by developing new damage parameters 
for different loading conditions. 

This is due to the fact that the vast majority of engineering components, such as machine shafts, 
turbine blades, and generally all components with notches are subjected to multiaxial cyclic 
stresses. Successful design of such components mostly depends on the correct life prediction 
under variable multiaxial loading. In many cases the variable loadings are nonproportional, and 
multiaxiality is characterized by non-zero mean stresses. 

Numerous experimental studies, concerning steels and Al alloys, have lead to the development 
of low cycle fatigue (LCF) models. However, many applications require life prediction for high 
cycle numbers (103 – 106) or even for infinite durability. The present paper analizes in this 
context a number of proposed damage parameters applicable for multiaxial high cycle fatigue 
(HCF). These parameters allow the determination of the number of cycles to failure in case of 
limited life, and the prediction of microcrack nucleation in case of infinite life. 

Particular aspects of HCF calculation 

As it has been mentioned before, a large number of mechanical components, in case of which 
periodical inspections for detection and control of microcrack growth are not possible, are 
designed for long term durability. The most important part of the life of such components is 
strictly related to the nucleation of fatigue cracks, determining the safe operation of equipment 
and machines. 



  Ion Dumitru, Loránd Kun   
 

 

118 

HCF damage occurs at lower stress levels than the material’s yield point, and it is caused by 
localized cyclic strains in the material grains. This is followed by the formation of slip bands 
where cracks nucleate, even though at macroscopic level the loading is elastic. Given the above, 
shear stresses have a decisive role in the primary phase of crack nucleation, while normal 
stresses, by opening the already formed cracks, lower the fatigue limit. 

Multiaxial HCF calculation can be done in order to verify the material under a specific loading, 
respectively to compare the damage parameter (which can be a stress) and the fatigue limit of 
the material. In other cases, the goal of a fatigue calculation is the determination of the number 
of cycles to failure, using an equation of the general form: 

c
f

b
f NBNAPD ⋅+⋅=).(  (1) 

where (D.P) – damage parameter, A, B, c, d material constants, Nf the number of cycles to failure. 

HCF models and damage parameters 

Over the years a large number of multiaxial HCF models and criteria have been developed. 
Each criterion is based on a damage parameter calculated as a function of the characteristics of a 
multiaxial load cycle [σij(t)]T defined on a period T, material properties, such as ultimate 
strength Rm, yield strength σc, fatigue limits for symmetrical and pulsating tension and torsion 
load cycles (σ-1, σ0, τ-1, τ0), etc. 

Stresses, sum of stresses, elastic strains, sum of elastic strains, product of stresses, product of 
stresses and strains, or even dimensionless functions can all be considered as (D.P) When 
dimensionless functions are considered, (D.P) ≥ 1 indicates the possibility of crack nucleation. 

The multiaxial HCF models and criteria can be classified as follows: 
• models based on equivalent stresses; 
• critical plane criteria; 
• models based on mean stresses in elementary volumes (integral approach); 
• energy based models; 
• models based on stress invariants; 
• mesoscopic models. 

Models based on equivalent stresses 

As their name suggests, these models consider as (D.P) a uniaxial equivalent stress, for which 
the same fatigue limit is obtained as for multiaxial loads. Initially these models were used for 
the calculation of an equivalent stress in case of in-phase multiaxial loadings [1][2][3][4]. Later 
developed models also took into account the effect of phase shift between bending and torsion, 
applicable for machine shafts [5][6][7]. 

Such models are frequently used in machine design because of their relative simplicity and 
because they give conservative results regarding the fatigue life of transmission shafts. The 
(D.P) is usually a stress or the combination of stresses, while the critical value is the tension, 
torsion or bending fatigue limit of the material (see Table 1.). 

Critical plane criteria 

These criteria are based on the idea of reducing a multiaxial stress state to an equivalent uniaxial 
one. Stanfield (1935) [8] was the first to introduce this concept. According to Stanfield, both the 
normal and shear stresses acting on a plane, considered the critical plane, have their effect in the  
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Table 1. Multiaxial high cycle fatigue models and corresponding damage parameters 
 Model Damage parameter, (D.P) Observations 
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n – material constant 

Stulen-
Cummings 
(1954) [10] 

maxnna ασ+τ  
The critical plane with normal n, is the 

plane where σn is max.; τna – shear 
stress ampl. in the crit. plane; 
(D.P)cr = τ-1; α = 2(τ-1/σ-1) – 1; 

Findley (1957) 
[9] maxnna ασ+τ  

The critical plane with normal n, is the 
plane where (D.P) is critical; 

(D.P)cr = τ-1; α = 2(τ-1/σ-1) – 1; 

Yokobori (1966) 
[11] 
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Skibicki (2007) 
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The critical plane with normal n, is the 
plane where τna is max.; σna and σnm are 

crit. plane normal stress ampl. and 
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damage process, being possible to combine them in a mathematical relation. However, these 
planes do not necessarily coincide with the principal planes. Twenty years passed until this 
concept was further developed, when Findley (1959) respectively Stulen and Cummings (1954) 
introduced the term “critical”, while describing their experimental procedures based on the 
critical plane concept [9][10]. The (D.P) of the first critical plane criteria were stresses, then 
strains and strain energy (combination of the first two) were introduced. In Table 1 some critical 
plane criteria with the corresponding (D.P) are presented. 

Models based on mean stresses in elementary volumes 

These models, also known as the integral approach criteria, are based on mean stress values 
acting in an elementary volume V. Generally these mean values are described by double 
integrals with respect to the spherical coordinates φ and θ of the plane ∆’s normal direction 
vector nr . With respect to φ the integrals are calculated on the interval [0; 2π], while with 
respect to θ on [0; π]. 

Widely accepted integral approach criteria are: Papadopoulos [19] and Papuga [20]. Another 
criterion based on mean stresses has been proposed by Grubisic and Simburger [21]. 

It has to be mentioned that the Papadopoulos criterion is in good correlation with experimental 
data in case of in-phase loading. The Papuga criterion brings the necessary corrections regarding 
out-of-phase loading, achieving satisfactory correlations with the corresponding experimental data. 
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Energy based models 

Energy models can be divided into three groups, depending on the type of specific strain energy 
dissipated in one load cycle: 
• models based on the elastic strain energy; 
• models based on the plastic strain energy; 
• models based on both elastic and plastic strain energy. 

Criteria based on the elastic strain energy are used for HCF calculation, N > 5⋅104 or 105 cycles. 
Plastic energy based criteria are more apropriate for LCF calculation, N < 104 or 5⋅104 cycles. 
Criteria based on both elastic and plastic energy can be applied for either LCF or HCF 
calculation. 

Table 1 presents the (D.P) from a number of models based on the elastic strain energy, 
applicable for HCF calculation. These (D.P) have the dimension of stress, and can be 
determined based on the distorsion (shear) strain energy (Macha [22] and Shariyat [23]). 

Banvillet [24] considers the volumetric strain energy density Ug(M) as (D.P) in a material point 
M, during a load period T, as follows: 

( ) ( ) ( )∑∑∫
= =

ε⋅σ=
3

1

3

1

,,
i j

T

e
ijijg dttMtMMU  (2) 

Models based on stress invariants 

The stress invariant models are based on the correlation between the fatigue limit, the second 
deviatoric stress invariant J2 and the first stress invariant I1. In general form: 

( ) ( ) ( ) ( )( ) ξ=mmaa JIJIf 2121 ,,,  (3) 

where 3211 σ+σ+σ=I ; ( ) ( ) ( )[ ]2
13

2
32

2
212 6

1
σ−σ+σ−σ+σ−σ=J ; a, m amplitudes and ξ is a 

material constant calibrated according to the fatigue limit. 

The most widely accepted stress invariant models are the following: Sines [26], Crossland [27] 
and Kakuno-Kawada [28]. Application of these three criteria, especially the most frequently 
utilized Crossland criterion, runs into some complications when determining the equivalent shear 
stress amplitude aJ2 . In case of in-phase multiaxial loading aJ2  can be determined directly: 

( ) ( ) ( ) ( )[ ]222222
2 6

6
1

xzayzaxyaxazazayayaxaaJ τ+τ+τ+σ−σ+σ−σ+σ−σ=  (4) 

 
Fig. 1. Shear stress amplitude for 

proportional and nonproportional loading 

In case of out-of-phase loading, determining 

aJ2  requires much more complex mathematics. 

The vector representing aJ2  has variable 
magnitude and direction during one load cycle. 
Fig. 1 shows the difference between proportional 
and nonproportional loadings. Consider a 
material point on a plane ∆ defined by the 

unitary normal vector nr , having the spherical coordinates φ and θ. The stress vector nS
r

can be 
resolved into the normal stress vector N

r
 and the shear stress vector C

r
 (Fig. 2). 

During a load cycle, nS
r

describes a closed curve ψ’, and the projection ψ of ψ’, on the plane
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in consideration described by C
r

, represents the load 
trajectory (Fig. 3). 

The shear stress amplitude depends on the position of 
plane ∆, Ca = f(φ, θ). In order to find Camax, the 
maximum value of the function Ca = f(φ, θ) has to be 
calculated for all possible values of φ and θ. 

When the stress invariant method is applied, aJ2  
remains the same for any position of plane ∆. 

To find aJ2 , there have been proposed a number of 
methods, by Papadopoulos [29], Deperrois [30], Duprat 
[31], Bin Li [32], Mamiya-Araujo [33] and Balthazar [34]. 

nS
r

C
r

N
r

nr

 

Fig. 2. Total stress vector nS
r

and 

components N
r

and C
r

acting in plane ∆ 

nr
N
r

nS
r

C
r

’

 
Fig. 3. Trajectory of load ψ’ described by stress 
vector nS

r
 and trajectory ψ described by shear 

stress vector C
r

 

Papadopoulos [29] considers that aJ2 is 
equal to the radius Ca of the minimum 
circumscribed circle to loading path ψ (Fig. 4). 

The mean shear stress is given by the 
magnitude of vector wr , which unites the 
origine with the center of the circle. One 
advantage in the calculation of aJ2 is the 
transformation of the deviatoric stress tensor 
S into a five-dimension vector sr . This way 
the deviatoric stress tensor is defined by 
fewer components [35] (Eq. (5)). 

During a load cycle, )(tsr also describes a closed curve, 
representing the load contour or path. 

Another method for determining aJ2  has been 
proposed by Bin Li [32]. According to Bin Li, the 
circumscribed circle is replaced by an ellipse. 

aJ2 can be found applying Eq. (6). 

In Eq. (6) Ra and Rb represent the semiradii of the 
circumscribed ellipse to the loading path (Fig. 5). This 
approach takes into account the effect of 
nonproportionality opposite to the Dang Van and 
Papadopoulos criteria. 

Mamiya and Araujo [33] replace the circle or the 
ellipse with a prismatic hull. The hull circumscribes 
the loading path in the deviatoric plane (Fig. 6). aJ2  
can be found in this case applying Eq. (7). 

wv

 
Fig. 4. Minimum circumscribed circle 

to lading path ψ [29] 

 

 
Fig. 5. Minimum circumscribed 

ellipse to lading path ψ [32] 

( ) ( ) xz5yzxyzyzxx    ss   s   s   s τ=τ=τ=σ−σ=⎥⎦
⎤

⎢⎣
⎡ σ+σ−σ= 2;2;2;

6
2;

3
1

3
2

2
3

4321  (5) 
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a1
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n1

n2

λ1
λ2

 
Fig. 6. Rectangular prism 

circumscribing an ellipsoid [33] 

 

In Eq. (7) ai is the amplitude of component xi(t) of the 
deviatoric stress tensor. In order to find ai Eq. (8) can be 
applied. 

The last part of this paper is dedicated to the comparison of 
these methods for a nonproportional loading case. 

2/15

1

2
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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=i
ia aJ  (7) 

)(max txa iii =  (8) 

3.6. Mesoscopic models 

According to this concept, some material grains suffer plastic strains in time at mesoscopic scale 
(1 – 100) µm, even though the material has an elastic behavior at macroscopic scale 
(engineering scale ≈ (0,1 – 1) mm). This leads to the nucleation of the first microcracks. In 
HCF, crack nucleation usually takes place at the level of a single grain (or a few grains), this 
level being denoted “mesoscopic scale”. 

At material grain level stresses and strains are difficult to quantify, hence the necessity for 
methods that allow the transition from macroscopic level to mesoscopic. The transition 
conditions have been detailed by Hill [36] and Mandel [37] by calculating the mesoscopic 
stresses as follows: 

ρ+Σ=σ :)(xA  (9) 

where )(xA  is the stress localization tensor, Σ  macroscopic stress tensor, ρ  local remanent 

stress tensor. In order to determine these values, simplifying hypotheses are needed, such as the 
Liu-Taylor hypothesis: 

pGε−Σ=σ 2  (10)

where G is the elastic shear modulus and pε  is the mesoscopic plastic strain tensor. 

The most complicated calculations arise when determining pε . The formulation of the first 
mesoscopic criterion belongs to Dang Van [38] and it is ulilized today in the French automotive 
industry. The criterion was developed for polycrystalline materials in the infinite life domain. 
According to the latest Dang Van criterion, at the level of a single grain only one active slip 
system exists. Dang Van postulates on this basis that crack nucleation will not occur while the 
following condition is respected: 

0≤τ−τ yn
r  (11)

where τy is the critical shear stress and nτ
r  the shear vector on a side with normal nr . 

Besides mesoscopic shearing, Dang Van also proposes that crack nucleation at stress levels 
close to the fatigue limit is strongly influenced by the mesoscopic hydrostatic stress, which in 
many cases is considered to be equal to its macroscopic value pH. The ((D.P)) obtained by 
double maximization is shown in Table 1. 

Another widely utilized mesoscopic criterion was proposed by Morel [39][40][41]. Morel 
considers that fatigue crack nucleation occurs when the accumulated mesoscopic plastic strain Γ 
reaches a material specific critical value Γcr. Furthermore, Morel accepts that only macroscopic 
slip mechanisms are active during the cracking process and studies different stages of material 
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behavior on this basis. Finally a Wöhler curve equation is deduced for crack nucleation. If  
(D.P) ≤ 1, the number of cycles necessary for crack nucleation can also be determined. 

Proposition of a new (D.P) and comparison with existing criteria 

The authors propose a correction to Crossland’s criterion as follows: 

β=+ α
HpJ2  (12)

where α and β can be obtained from simple fatigue tests, symmetrical torsion and tension 
respectively. When torsion is considered, the following can be written: 
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By transforming the deviatoric stress tensor, the equivalent shear stress amplitude will be: 
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Analogically, when tension is considered the following can be written: 
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Introducing in Eq. (12) the following is obtained: 
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Considering the above, the proposed criterion has the final form: 
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In Table 2 the relative errors obtained by applying the Crossland, Papadopoulos, Mamiya-
Araujo and the proposed model are compared, in case of a steel with the characteristics  
σ-1 = 313.9 MPa and τ-1 = 196.2 MPa [42][43]. 

Table 2. Relative errors for different models 
σxa σxm τxya τxym σVMa σVMm Φ eC eP eM-A ea No. [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [°] [%] [%] [%] [%] 

1 138.1 0 167.1 0 320.6 0 0 -2.27 -2.3 -2.28 -2.5 
2 140.4 0 169.9 0 326.0 0 30 -2.6 -0.6 -0.64 0.91 
3 145.7 0 176.3 0 338.3 0 60 -3.61 3.1 3.1 -3.16 
4 150.2 0 181.7 0 349.0 0 90 -3.74 6.3 6.27 -2.19 
5 245.3 0 122.6 0 324.4 0 0 1.44 1.5 1.44 1.92 
6 249.7 0 124.8 0 330.2 0 30 0.01 3.3 3.26 0.92 
7 252.4 0 126.2 0 333.9 0 60 -8.35 4.4 4.39 -7.75 
8 258.0 0 129.0 0 341.3 0 90 -17.81 6.5 6.70 -16.34 
9 299.1 0 62.8 0 318.3 0 0 0.92 0.9 0.92 0.45 
10 304.5 0 63.9 0 324.0 0 90 -2.99 2.7 2.74 -2.80 

C – Crossland; P – Papadopoulos; M-A – Mamiya-Araujo; a – Authors 

Conclusions 

This paper presents the multiaxial HCF damage parameters in the finite and infinite life domain. 
Besides the damage parameters, the corresponding fatigue calculation methods have been also 
presented, i.e. equivalent stress criteria, critical plane criteria, the integral approach, stress 
invariant models, strain energy criteria and  mesoscopic models. 

The last part of the paper presents a new model proposed by the authors based on a correction to 
the Crossland criterion. The model has been compared with three other models using experimental 
data obtained by Nishihara and Kawamoto. The new model is in better correlation with 
experimental data than the Crossland criterion and it is easier to apply than other existing models. 
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Nomenclature 

σa – amplitude of a tension-compression cycle σ0 – pulsating tension fatigue limit 
σm – mean stress in a tension-compression cycle τ0 – pulsating torsion fatigue limit 
τa – amplitude of a torsion cycle f0 – pulsating bending fatigue limit 
τm – mean stress in a torsion cycle σ1, σ2, σ3 – normal principal stresses 
fa – amplitude of a bending cycle σij – stress tensor 
fm – mean stress in a bending cycle εij

e – elastic strain tensor 
σ-1 – symmetrical tension fatigue limit Uf – distorsion component of specific strain energy 
τ-1 – symmetrical torsion fatigue limit pH – hydrostatic pressure 
f-1 – symmetrical bending fatigue limit G – elastic shear modulus 
Rm – ultimate tensile strength I1 – first stress invariant 
Rp – tensile yield limit J2 – second deviatoric stress invariant 
τr – ultimate shear strength S – deviatoric stress tensor 
τc – torsion yield limit sr – five-dimension vector in the Euclidian space E5 
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Asupra parametrilor de degradare la oboseală multiaxială cu 
numere mari de cicluri 

Rezumat 
La ora actuală este binecunoscut faptul că majoritatea componentelor mecanice sunt supuse unor 
solicitări multiaxiale ciclice. Pe această bază în ultimii ani au fost efectuate numeroase studii teoretice şi 
experimentale pentru elucidarea mecanismelor de degradare la solicitări variabile în condiţii de 
multiaxialitate. În acest context în cadrul lucrării se face o analiză critică a principalilor parametri de 
degradare folosiţi pentru studiul durabilităţii la oboseală multiaxială cu numere mari de cicluri 
(domeniile durabilităţii limitate şi nelimitate). Lucrarea prezintă şi un parametru nou de degradare 
propus de autori, care a fost verificat dovedind o bună concordanţă cu unele rezultate experimentale din 
literatura de specialitate. 


