BULETINUL	Vol. LXVII	107 116	Serie Tehniex
Universității Petrol – Gaze din Ploiești	No. 2/2015	107 – 116	Seria Tehnică

Overview of Geological Factors with Impact on Pressure Balance in Deep Wells

Dumitru Iordache

Liceul Tehnologic "Ludovic Mrazek", Str. Mihai Bravu, nr. 241, Ploiești e-mail: dumior.ghighiu@yahoo.com

Abstract

The factors with impact on the balance of pressures inside deep wells are: geological factors, modification of fluid density, influence of structural arrangement of strata and influence of pressure and fracturing gradients. At higher depths, generally over 4000 m, where there are also very high temperatures and pressures, the temperature diminishes the density of the drilling fluid while a higher pressure makes density be higher. Effects do not eliminate each other but one of them becomes prevailing.

Key words: lithology, pressure, density, temperature, pressure and fracturing gradients

Introduction

Temperature and pressure affect the density of the drilling fluid bot in the well and in the annular space. Anomalies may occur also depending on lithology or on the structural arrangement of geological strata: inclined strata, diapires, faulted or of other nature. In certain rocks that has more difficult to drill, low pressure fluctuations may lead to drilling accidents, lost circulations, gasification of the drilling fluid, or even total loss of control over the well. Loosing/locking circulation may cause also the drill string to be stuck, or cuttings afflux, key hole. Drill pipe being stuck originates in sticking of the string due to differences of pressure given by the specific weight of the mud and stratum pressure. If the former is higher no problems occur but if the latter is higher, then drill pipe sticking occur as well as instabilities in the walls of the borehole, crumbling falling over the drill string and sticking it.

On Colibaşi oilfield, the following occur as **drilling problems:** losses of drilling fluid in Surface Miocene, Dacian and Oligocene; instability of borehole walls in: Dacian, Pontian, Meotian and Oligocene; shrinkage of borehole in Pontian and Meotian; hold fast on borehole, corrections and possible borehole stuck in Pontian, Meotian and Oligocene; gasification of drilling fluid in surface rock formations that may be mitigated by maintaining density to minimum values and its increase only in need.

Contaminating agents for drilling fluid resulted from a survey of the lithological column reveal the presence of gypsum originated in Lower Miocene and possible prevailingly pelitic sequences that may by spreading charge the drilling fluid with solid materials.

Drilling fluid contaminating agents and difficulties in drilling the oilfield Caragele. There is a trend of losing drilling fluid in surface formations (approximately until 300m depth), in wells drilled on the oilfield as well as on adjoining oil fields that motivated fastening of the surface casing at higher depth than required by the values of fluid pressures in strata. Trends of gasification of the drilling fluid in crossing the possible potential of lenticular reservoirs of Pontian and Meotian. At crossing of lithostratigraphic sequence during drilling the phenomenon of drilling fluid contamination with foreign bodies can take place due either capacity of marl dispersion or sand fineness.

On Piscuri- Filipeşti Oilfield, sector Filipeşti there is also an anticlinal strongly tectonised by a system of longitudinal and cross faults punctured by digitations of salt diapires. Reservoirs have sheet-deposits, tectonically and stratigraphically screened. Other wells drilled and that supplied information has: 20MP (1985), 603 MP (years 80), 533MP and 535 MP (1937), 105 Filipeşti (2010).

Among the most frequent drilling difficulties there has: instability of borehole walls (in Dacian and Pontian) and coal contamination.

The contaminant for drilling fluid is caused by coal intercalations–specific agent, especially on interval 714 - 975m (Dacian) that can be counteracted by treating the drilling fluid with specific materials. It is likely that the prevailingly pelitic sequence may spread out in the fluid and ball it out with solid materials that could alter its properties which require permanent control of the contents of solids.

The Methods of expressing formation pressure has differentiated into two categories: evaluation of pressure in pores by immediate methods and evaluation of pressure in pores by retarding methods. Evaluation of pore pressure during drilling is done depending on: mechanical advance rate in drilling, d exponent and d_c exponent.

The Penetration rate may show the possibility of entering an area of transition towards a pressure anomaly formation. It is applicable whenever the drilling practice and the lithological nature stay approximately constant. Firstly the penetration rate shall be determined on advance intervals depending on drillability, as follows: 0.5-1 m for low drillability intervals, 2-3 m in average drillability formations (in high drillability formations – soft rocks – advance feed intervals 9-10m = feed piece length); the values of penetration rate has presented into rectangular coordinates depending on the average depth of the feed interval; tracing of the normal trend of changing the penetration rate value (proper to each bit) while considering the first 2-3 determinations; marking on diagram of the current next points and interpretation of results in each case – should the rate value be higher than normal, then the possible pressure anomaly is positive – if it is lower than normal, the possible pressure anomaly is negative.

The Exponent d shall be set out by using a nomogram (between Vm, N, Ds and Gs) or with relation:

$$d = \log \left(0.5464 \, V_m / N \right) / \log \left[0.065 \, G_s / (D_s - X) \right] \tag{1}$$

where: D_s – diameter of rock bit, mm; V_m – penetration rate, m/h; G_s – thrust, tf; N – rotational speed, rot/min; X – void factor, except for diamond and insert tooth bits, in which X = 25.4 mm. Procedure is the following:

During drilling at 1.5-3 m (on common drillability) or at 9-10m = the feed piece (on higher drillability) penetration rate is determined (provided that the displacement practice should be volumetric, and differential pressure on borehole bottom should not exceed 70 kgf/cm²), d is calculated with formula/ or the above nomogram, points has marked corresponding to values obtained for d at average rate of the feed interval d(H); after representation of a sufficient number of points (initially 3-5) the line of natural trend is traced (in parallel to an imaginary straight crossing two points: $M_1(H = 0 \text{ m}; d = 1.4)$ and $M_2(H = 1500 \text{ m}; d = 1.7)$ and inscribes

as average through several points M_i (H_i , d_i) placed in the area already identified to have normal pore pressure (line of normal trend, usually being one for the entire well, however there has cases that shifting of it is demanded at the same slope on changing of bit diameter, high variations of the drilling practice, etc.); the value of pore pressure shall be determined by the method of equivalent depth by applying the below formula:

$$p_p = \Gamma_1 \cdot H_i - H_\ell (\Gamma_1 - \Gamma_h), \, \text{kgf/cm}^2$$
⁽²⁾

The Exponent d_c is a correction of exponent d, depending on mud specific weight γ_f , kgf/dm³ which drilling is conducted with. It is given by expression:

$$d_c = 1.07 \, d \, / \, \gamma_f \tag{3}$$

Procedure is the same as for exponent d, except that values for d_c has used. The pore pressure shall be established by the equivalent depth method. The closest to reality is the relation:

$$p_{p} = H_{1} [\Gamma_{1} - (\Gamma_{1} - \Gamma_{h}) (d_{ci}/d_{cn})^{1.2}], \text{ kgf/cm}^{2}$$
(4)

where d_{ci} is the current value of exponent d_c and d_{cn} is the value of exponent d_c on the line of natural trend, at the concerned depth, the nomogram could be used of the ratio d_{ci}/d_{cn} versus $(d_{ci}/d_{cn})^{1.2}$. Under normal circumstances, if drilling depth increases, then also the rotation resistant momentum will gradually increase. If the drilling practice is constant and the resistant momentum has high fluctuations, it is possible to cross an abnormal pressure area associated with a diminution of the pore pressure that could be remedied.

Also increases of frictions in drilling control (upwards or downwards depending on the kind of pressure) show a large area of transition towards abnormal pressure.

Evaluation of pore pressure by retarding methods is based on the parameters of drilling fluid and of marl in the cuttings. They have: change in the mud gas content, which could show anomaly in pressure and raise of fluid volume in tanks which shows positive anomaly.

The temperature gradient considers rock porosity, temperature of formations and geothermal gradient get changing in areas of transition of pressure anomalies under constant conditions of flow rate, and temperature of the fluid in well derivation can seize a change of the geothermal gradient and pressure anomaly.

Density of marl in the cuttings shall be measured and represented, the normal trend is traced for raise in marl density and pore pressure is expressed by the equivalent depth method.

Pressure and Fracturing Gradients

The Gradient of hydrostatic pressure, Γ_h is affected by concentration of salts, gas and solids in the fluid column and that is different depending on the temperature gradient. An average typical gradient of 0.10kgf/cm²/m is used for clean and slightly mineralized water and 0.107410 kgf/cm²/m for saturated salty water.

The Gradient of lithostatic pressure, $\Gamma_{1,}$ is determined per each lithological interval in the stratigraphic column. It has values within 0.231-0.312 kgf/cm²/m and considers: thickness of interval h_i, m; average porosity m_i decimal, specific gravity of pore fluid γ_{fi} , kgf/dm³, specific gravity of the rock γ_{ri} , kgf/dm³. The apparent specific gravity is calculated per each interval and Γ_1 is determined with relations:

$$\gamma_{ri} = (1 - m_i) \gamma_{ri} + m \gamma_{fi}, \text{ kgf/dm}^3$$
(5)

$$\Gamma_{li} = 0.1 \sum (\gamma_{ri} h_i) / H_i, \text{ kgf/dm}^3$$
(6)

The Geothermal Gradient stands for the raise of temperature versus the temperature of the neutral layer for the depth unit. It is expressed into °C/m, and has values within 0.015-0.038 and is determined with relation:

$$\Gamma_i = \left(t_i - t_0\right) / H_i \tag{7}$$

where t_i is the temperature of layers at H_i depth, and t_0 is the temperature of the neutral layer.

Pressure and fracturing gradients were evaluated upon the geophysical investigation survey, information obtained from running of drilling and production process in the above-mentioned wells depending on the lithological type and the depth at which the formations beforehand described has estimated to be encountered. Values of such have shown in the Sheet of complex featuring of the stratigraphic column and of substantiating the casing diagram and the drilling fluid programme.

The next figure shows the regional values of the geothermal gradient and temperature values that has subnormal.

Fig. 1. Regional values of the geothermal gradient

Maintaining of the well in safety is achieved by classic methods used and by control and maintenance of the mud parameters at certain values.

Density of drilling fluid is affected by temperature that develops due to frictions between fluid particles, fluid and rocks, fluid and drill string or casings and finally due to the geothermal scale. That is valid even if temperature may be deemed constant in certain depths because of the consistency of the geological formation or of the thickness of some layers such as Kliva or Tarcău sandstone, encountered on oil fields: Colibași, Caragele or Piscuri-Filipești.

Conclusions

Site data about pressures and temperatures in static and dynamic conditions have been obtained also by means of the drilling cuttings brought on top by the drilling fluid, determinations in strainer assays, records of temperatures, pressures and of other parameters showing that temperature effect on pressure in annular space affects the possibility of accurately estimating density as well as other parameters.

The little possibilities of operation featuring many deep wells show considerable hazard. Within such difficult environment, small fluctuations of pressure may convert into very costly circulation losses, drill string getting stuck, and even up to the total loss of control over the well.

Table 1. Complex featuring of stratigraphic column

LITHOLOGY	Depth, m	Pressure Type	Drill. Fluid Type
Levantine+ Dacian	0- 700	Normal	-spread, water
sands, clay, sandy sandstones, coals	thick.350-650	P-res.=28-32at	based
Romanian (L III+II), productive on southern flank	thickness: 200	Abnormal	$\rho = 1.1 - 1.2 \text{ kg/ dm}^3$
at Moreni D has 6 blocks: Drăder (Dr), Moreni	unekness. 200	$\Gamma_p = 0.97 - 1.03$	filtrate 3-5mm
(Mo), Dinterm, Gross (Gr) and Group I (GrI). Dr	thickness: 70	at/m	fluid gasification
has 25% of vol., Dr III is productive on both flanks,	thick:90 on N	$\Gamma_{fis} = 1.35 - 1.7$	in surface
Dr II prod. on left flank (grey sands in N, sandy	flank	1 _{fis} =1.55 1.7	formations;
sands in S)	THUNK		restrictive rate in
Dr. Ochiuri the most imp. productive block	60 on S flank		surface
Dr. din D (90% of resources+11% of reserves);	thick: 2-4 S fl.	$G_t = 0.03^{\circ} \text{C/m}$	formations
divided into: DrIII, DrII, DrI.	thick1015 N fl.	07 0.00 0/11	10111100115
Gathering: quartz sand12-15int/5-6 intervals			
Meotian: Ochiuri, G. Ocniței. has four blocks: MIII,	thick:120	Abnormal	treated wt. CaCl,
Mint, MII and MI. MIII, and MI psamitic facies,	unex.120	1 ionormui	KCl
sandst., calcar. sand MIII- highest: vol. and reserves	thick:10-45	Abnormal	$\rho=1.2-1.4 \text{ kg/ dm}^3$
Pontian wt. lithofacies prevailingly marly.	800-1300	$\Gamma_p=1.07 \text{ at/m}$	Incr. density $\rho =$
It is the protective formation.	thick:500-600	$\Gamma_{p=1.07}$ at m $\Gamma_{fis}=1.85-1.95$	1.21-1.4 Filtr. low
Miocene = productive block of Burdigalian,	1300-2000	$\Gamma_{ps}=1.4-1.35$	Not tr.in Up.
composed of carbonaceous sandst., siliceous	thick:10-30;V	1_{p} = 1.4-1.55 at/m	Mioc., tr. wt. KCl.
sandst.: Mi productive= layer ends; except: Ochiuri	thick:50-60	$\Gamma_{fis} = 1.78 - 1.9$	(Low Mioc.) Lost
field	unek.50 00	1 _{fls} =1.70 1.9	fl. in Surf.
			Miocene.
Oligocene productive, on Colibași field, wt. 8	2000-2800	Normal	KCl based drill.
horizons:	thick1300-	$\Gamma_p = 1.2 - 1.3$	fluid
- marly-calcareous brown, bitumen	1500	at/m	Glydrill
- upper disodile (disodilic shales wt. sand interc.)	thick: 30-40	$\Gamma_{fis} = 1.9 - 2.05$	$\rho = 1.15 - 1.34$
- Pucioasa stratum wt. Fusaru sandstone		1 Jis 119 2100	p 1.10 1.0.
- Vinetișu: siltitic marls, calcareous sandstones.	thick: 40-50		
- lower disodils: disodilic shales and fragm.fish	gros550-1100		
scales	thick:175-200		
- lower Kliwa sandst: altern.: sandst. wt. disod.	thick: 100		
shales	thick:120	Abnormal	Filtrate 2-3mm
- Podu Morii:intercal. of brown clays-marls	thick: 700		
- upper Kliwa sandst:, 3 level: low, med, upp,			
altern. Kliwa sandstone, disodil., to whitish sands			
Neogene. Miocene wt. Aquitanian-Burdigalian	thick: 370		
strata			
Cornu strata, Aquitanian Burdigalian wt. 3 levels of	thick:25-30		ρ= 1.2-1.37
low sandst. wt. Operculine, wt. Pectene			
Lower saliferous form. wt.: breccia, quartzite mica-			
shales, grey-calcar. sandst., limestones			
Formation Brebu, wt. two horizons: one wt.	thick:450-550		
conglomerate and other sandy-micro-conglom.			
Form.Vărgata, wt. four horizons:	thick:750-800		KCl based drill.
- brown sandy-coarse wt. evap., salt breccia	thick: 1000		fluid
- brown sandy-marly, calcar.sandst., marly	thick: 950	Normal	Glydrill
anhydrite	thick: 1050		
- grey, sandy-marly: calcar.sandst., marls, sand.,	thick: 300		
gypsum			
- shaly: marls sand. grey-greenish, calcar. shales			
Badenian- contin. of Low Mi: wt. four horizons:	thick: 10-15	$\Gamma_p = 1.7 - 1.73$	
- marls- tuffs wt. globigerina, orbulina saturalis	thick: 1-600	at/m	
- upper saliferous formations wt. spiroplectamines		$\Gamma_{fis}=2.05$	
shalas wit undialans wit animanlastaminas	thick: 70		Filtrate 2-3mm
 shales wt. radiolars wt. spiroplectamines marls wt. Spiratela Bullimina and Bolivina, tuff d 	thick: 200		Thrace 2-5hill

Table 2. Comparative analysis per oil fields (I): Colibași oilfield

Sarmatian is pre-Meotian; has five associations:			
 -Upp.Bessarabian wt. associations wt. Bolivinae -Low.Bessarabian wt. associations wt. Paramysis -Upp.Volhinian -Low.Volhinian wt. associations of Miliolidae -Buglovian, wt. asoc. Anomalino of Badenensis 			Some wells of Colibași field used a CaCl based 2 nd fluid.
Buglovian is prevailing. pelitic wt.: grey marls and sandy sandstones	thick: 50	Normal	
-Volhinian basic: sandy sandstones, marls -Low. Bessarabian is the 1 st floor of Sarmatian wt.: intercalations of sands and marls	thick:100-150 thick:200-250		
-Upp. Bessarabian wt. yellsandy and calcar.sands.	thick: 50-400		ρ= 1.3-1.37
Pliocene. Me is contin. and discont., wt.: sands and sandst. altern. wt. marls. Upp. and low. E.; after sandy blocks of MI, MIII Lower Me is dominated by sands altern. salm. waters, on sedim. M.int, MIII and Upper Me wt. grey-yell. sands altern. Wt. oolitic marls	thick:150-250	$\Gamma_p = 1.2 - 1.3$ at/m $\Gamma_{fis} = 1.9 - 2.05$	Filtrate low: 2-3mm
Pontian has three blocks: marly-clayish, sandy- marly, marls grey; sands wt. hydrocarb. at Măgurele (written P and P1)	thick: 50-500		
Dacian has two horizons: a lower one (slightly salm.) and another upper wt. freshwater.	thick:400-500	Abnormal	
Romanian closes the stratigraphic sequence wt. marls, strata of lignite (bottom) and sands-gravel	thick: 1000		ρ= 1.35-1.4
Quaternary wt. sediments across the entire region by alluvia and proluvia wt.: gravels, sands, sandstones trovants wt. intercal. of clays, marls wt. lignite layers.	thick: 1000		Filtrate wt. Low values: 1- 1.5mm

Table 3. Comparative analysis per oil fields (II): Piscuri-Filipești oilfield

LITHOLOGY	Depth, m	Pressure Type	Drill. Fluid Type
Levantine (L): coarse deposits, gravels, sandst. and	0-1700	Normal	Natural, water
coarse sands and taimen fauna. Dacian (D) wt.	thick.350-650		based
depos.in arinitic facies, marls, sands, clay, sandy	coals, interv.	Normal	
sands., coals (Dr.)	714-975		
Romanian (L III+II), productive on S flank at	thickness: 200	Abnormal	ρ =1.25 kg/dm ³
Moreni D has six blocks: Drăder (Dr), Moreni		$\Gamma_p = 0.97 - 1.03$	filtrate 3-5mm
(Mo), Dinterm, Gross (Gr) and Grup I (GrI). Dr has		at/m	spread fluid,
25% of vol., DrIII is productive on both flanks, DrII	thickness: 70	Γ_{fis} =1.33- 1.75	gasification of
is productive on left flank (grey sands in N and	thick:90 on fl.		fluid in surface
sandy sands in S) Dr. Ochiuri is the most import.	Ν		formations
Productive block. Dr. of D (90% of resources)	60 on flank S		contaminated wt.
divided into: DrIII, DrII, DrI. Gathering: quartz	thick:2-4 fl.S	$\Gamma_t = 3^{\circ} C/m$	coals: Drăder
sand12-15 intervals /5-6 intervals	gros1015fl.N		(Filipești)
Pontian wt. lihtofacies prevailingly marly wt. marls,	1022-1722	Abnormal	treated wt. CaCl,
low sandy marls, finely micaceous. It is a form.	thick:500-600	Abnormal	KC1
protect. accum. of hydrocarb. in Meotian			ρ=1.21-
			1.25kg/dm ³
Meotian has predominant sabulous facies wt. grey-	1722-1912	Гр=1.05-1.07	Increased density
yell. sands, marls and oolitic sandst It has 1-3	thick:500-600	at/m	ρ= 1.21-1.25
cockle shells between marls and sands		Γfis=1,9-2	filtrate low
Miocene = productive block of Burdigalian,		$\Gamma_p = 1.4 - 1.35$	Not tr. in Upp.
composed of carbonaceous sandst., siliceous	thick:10-30;V	at/m	Mi, KCl tr.(Low
sandst.: Mi productive= layer ends; except: Ochiuri	thick:50-60	$\Gamma_{fis} = 1.78 - 1.9$	Mi.) Fluid loss -
field		$\Gamma_t = 3.8^{\circ} \text{C/m}$	Surf.Mi.

Helvetian encountered in the final part of well and	1912-1915	Normal	ρ= 1.30-1.32
is devel.into marly facies. Sect. Piscuri-Filipești	thickness:1300	$\Gamma_p = 1.2 - 1.3$	
anticl. strongly tectonised by longit. and cross	-1500	at/m	KCl based drill.fl.
faults, punct. by salt diapires, subordon. clays		$\Gamma_{fis} = 1.9 - 2.05$	Glydrill
- Podu Morii field: alternation brown clays-marls	thick:175-200	1 Jis 119 2100	$\rho = 1.32 - 1.34$
-upper Kliwa sandstone, three levels: lower, med, upp,	thick: 100		Filtrate 2-3mm
alternat.sandst.Kliwa disodil, disodil, to white sand	unex. 100	Abnormal	Thrace 2-5mm
		Abilorinai	
Neogene. Miocene wt. Aquitanian-Burdigalian			
strata.			
Strata of Cornu, Aquitanian Burdigalian wt. 3	thick:25-30		ρ= 1.32-1.37
levels of sandstones: lower wt. Operculine, wt.			
Pectene			
Lower salilferous formation wt.: breccia, quartzites,			
mica-shales, grey calcareous sandstones.,			
limestones			
Formation Brebu, wt. two horizons: one wt.	thick:450-550		
conglom. and another sandy-microconglom.			
Formation Vărgată, wt. four horizons:	thick:750-800		KCl based drill.
-brown sandy-coarse wt. evaporite, salt breccia	thick: 1000		fl. Glydrill
-brown sandy-marly, sandstones calc, marls,	thick: 950	Normal	-
anhydrite	thick: 1050		
-grey, sandy-marly: calcar. Sandst., marls, sand, gyps.	thick: 300		
-shaly: marls sand.grey-greenish, calcar. shales.			
Badenian- contin. of Low. Mi: wt. four horizons:		$\Gamma_p = 1.7 - 1.73$	
-marls- tuffs wt. globigerina, orbulina saturalis	thick: 10-15	at/m	
-upper saliferous formations wt. spiroplectamine	thick: 1-600	$\Gamma_{fis}=2.05$	
-shales wt. radiolars wt. spiroplectamine	thick: 70	<i>Jis 1 1 1</i>	Filtrate 2-3mm
-marls wt. Spiratela Bullimina and Bolivina, tuff d	thick: 200		
Sarmatian is pre-Meotian; has five associations:		$\Gamma_t = 4^{\circ} C/m$	ρ=1.36-1.45
-Upper Bessarabian wt. associations wt. Bolivinae		1	Gasification
-Lower Bessarabian wt. associations wt. Paramysis			during drilling
-Upper Volhinian			and in circ. drill.
- Lower Volhinian wt. associations of Miliolidae			fluid
-Buglovian, wt. asoc. of Anomalino Badenensis			$\rho = 1.98 - 2.10$
Buglovian is prevailingly pelitic wt.: marls grey and	thick: 50	Normal	p 1.90 2 .10
sandy sandstones	unen: 50	rtonnar	
-Basic Volhinian: sandy sandstones, marls	thick:100-150		
-Lower Bessarabian is the first floor of Sarmatian	unen.100 100		
wt.: intercal, of sands and marls	thick:200-250		
- Upper Bessarabian wt. yellowish-sandy and	thick: 50-400		ρ= 1.95-1.97
calcareous sands.	unex: 50 100		p 1.95 1.97
Pliocene. Me contin. and discount., wt.: sands and	thick:150-250	$\Gamma_p = 1.1 - 1.15$	Filtrate low:
sandst. altern. wt. marls. It is upp. and low.upon	unex.150 250	Γ_p . current= 0.6-	2-3mm
sandy blocks MI, MIII. Lower Me dominated by		1_{p} . current= 0.0- 0.5	2 511111
sandy blocks wit, with. Lower we dominated by sands altern. wt. salm. waters, in sedim. M.int, MIII		$\Gamma_{fis} = 1.9 - 2.05$	Pelitic mat. may
and upper Me wt. grey-yellowish sands altern. wt.		Γ_{fis} -1.9-2.05 Γ_{fis} . current=	spread in drill.
oolitic marls		1_{fis} . current= 1.75-1.80	fluid
	thick: 50-500	1.75-1.00	
Pontian has 3 blocks: marly-clayish, sandy-marly,	unck: 50-500	$\Gamma_t = 4^{\circ} C/m$	
marls grey; sands wt. hydroc. at Măgurele (P; P1)		$1_t = 4^{-1} C/m$	fluid by density
Design has two has - 1 (-1'-1 (1 1) 1	thisle 400 500	A hp or	increase
Dacian has two horiz.: low.(slightly salm.) and upp.	thick:400-500	Abnormal	
wt. freshwater.	1:1 1000		1.00.2.10
Romanian closes the stratigr. sequence wt. marls,	thick: 1000		ρ= 1.98-2.10
strata of lignite (bottom) and sands and gravel.	1:1 1000		T.1 1
Quaternary wt. sediments across entire region by	thick: 1000		Filtrate wt. low
alluvia and proluvia wt.: gravel, sands, sandstones,			values: 1-1.5mm
trovants wt. intercal. of clays, marls wt. lignite strata.			

LITHOLOGY	Depth, m	Pressure Type	Drill. Fluid Type
Dacian (D) wt. deposits in politic facies, marls,	0- 1700	Normal	Natural, water
		inormai	based
sands, clay, sandy sandstones, coals	thick.350-650	Abnormal	
Romanian (L III+II), productive on S flank, at Moreni. D has six blocks: Drăder (Dr), Moreni	thickness: 200	Abnormal $\Gamma_p=0.97-1.03$	ρ =1.25 kg/ dm ³ filtrate 3-5 mm,
	thickness: 70	$1_p = 0.97 - 1.03$ at/m	-
(Mo), Dinterm, Gross (Gr) and Grup I(GrI). Dr has	unckness: 70		fluid spreading,
25% din vol., Dr III e productive on both	4h; -1-:00	Γ_{fis} =1.33- 1.75	gasification of fluid in surface
flanks.,DrII prod.on left flank (grey sands in N and	thick:90 pe fl.N		
sandy sands in S)	60 on flank S		formations; contamin. wt.
Dr. Ochiuri is the most import. productive block Dr. of D (90% of resources+11% of reserves);	thick:2-4 fl.S	$\Gamma_t = 3^{\circ} C/m$	coals: Drăder
		$T_t = 5 \text{ C/III}$	
divided into: DrIII, DrII, DrI. Gathering: quartz	gros1015fl.N		(Caragele)
sand12-15int/ 5-6 intervals	1670-2020	A h	twented ant CoCl
Pontian wt. lithofacies prevailingly pelitic wt. marls	thick:500-600	Abnormal	treated wt. CaCl, KCl
slightly sandy marls, finely micaceous; and two	unck:300-600	Abnormal	
psam. blocks wt. altern. of sands, marly sands,			$\rho = 1.21 - 1.25 \log (4m^3)$
marls	2020.2500	F -1.05 1.07	1.25kg/dm ³
Meotian has prevail, sabulous facies	2020-2500 thick:500-600	$\Gamma_p = 1.05 - 1.07$	Increased density $2-1, 21, 1, 25$
wt.fin.micaceous sand and/or calcareous sandstones. Subord. pel. interc. : marls, marly	unck:300-600	at/m $\Gamma_{fis}=1,9-2$	ρ = 1.21-1.25 filtrate low
		$1_{fis} = 1,9-2$	initiate low
fine/very fine micaceous sands Miocene = product. block of Burdigalian,	1300-2000	$\Gamma_p = 1.4 - 1.35$	Not tr. in Upp.Mi.
composed of carbonaceous sandst., silic. sandst.:	thick:10-30;V	$1_p = 1.4 - 1.55$ at/m	KCl tr. (Low.Mi.)
Mioc. prod.= layer ends; except: Ochiuri field	thick:50-60		Fluid loss
Mioc. prod.– layer ends, except. Ochiun neid	unck.30-00	$\Gamma_{fis} = 1.78 - 1.9$ $\Gamma_t = 3.8^{\circ} \text{C/m}$	Upp.Mi.
Oligocene prod. on Colibași field, wt. 8 horizons	2000-2800	Normal	$\rho = 1.30 - 1.32$
-marly-calcareous brown, bitumen	thick.1300150	Normai	p= 1.50-1.52
-upper disodile (shales disodil.wt. intercal. sand.)	0	$\Gamma_p = 1.2 - 1.3$	
- Pucioasa strata wt. Fusaru sanstone	thick: 30-40	$r_p = 1.2$ 1.5 at/m	KCl-based
-Vinetişu: siltitic marls, calcareous sandstones.	thick: 40-50	$\Gamma_{fis} = 1.9 - 2.05$	drilling fluid
-low.disodile: shales disodil. and fragmen.fish	gros550-1100	1 _{fis} -1.9 2.05	Glydrill
scales	thick:175-200		$\rho = 1.32 - 1.34$
-low.of Kliwa sandst.: altern. sandst. wt.	thick: 100		p 1.52 1.51
disodil.shale	thick:120		
- Podu Morii field: alternat. of brown clays -marls	thick: 700	Abnormal	Filtrate 2-3mm
-upp.of Kliwa sandst.on three levels: low,			
med.,upp.,			
altern. Kliwa sandst.wt. disodile to whitish sands			
Neogene. Miocene wt. strata Aquitanian-	thick: 370		
Burdigalian.			
Strata of Cornu, Aquitanian Burdigalian wt. three	thick:25-30		ρ= 1.32-1.37
levels of sandstones: lower wt. Operculine, wt. pecten			
Lower salif. form. wt.: breccia, quartzite, mica-			
shales, grey-calcar.sandstones, limestones			
Form. Brebu, wt. two horizons: one wt. conglom.	thick:450-550		
and another sandy-microconglomerates			
Form.Vărgată, wt. four horizons:	thick:750-800		Drill. fluid based
-brown sandy-coarse wt. evaporite, salt breccia	thick: 1000		onKCl
-brown sandy-marly, calcar.sandstones, marls	thick: 950	Normal	Glydrill
anhydr.	thick: 1050		
-grey, sandy-marly: calcareous sandstones, marls, sand.	thick: 300		
-shaly: marls grey-greenish sand, calcar.shales			
Badenian-contin. of Low. Miocene wt. four		$\Gamma_p = 1.7 - 1.73$	
horizons:	thick: 10-15	at/m	
-marls- tuffs wt. globigerina, orbulina saturalis	thick: 1-600	$\Gamma_{fis}=2.05$	
-upper saliferous formations wt. spiroplectamine			

 Table 4. Comparative analysis per oil fields (III): Caragele oilfield

-shales wt. radiolars wt. spiroplectamine	thick: 70		Filtrate 2-3mm
-marls wt. Spiratela Bullimina and Bolivina, tuff	thick: 200		
Sarmatian is pre-meotian; has five associations:		$\Gamma_t = 4^{\circ} C/m$	ρ=1.36-1.45
-Upp.Bessarabian wt. associations wt. Bolivinae			Gasification
-Low.Bessarabian wt. associations wt. Paramysis			during drilling
-Upper Volhinian			and in circ. drill.
-Low. Volhinian wt. associations of Miliolidae			fluid
-Buglovian, wt. asoc. Anomalino de Badenensis			ρ=1.98-2.10
Buglovian is prevailingly pelitic wt.: grey marls	thick: 50	Normal	
and sandy sandstones			
-Volhinian basic: sandy sandstones, marls	thick:100-150		
-Low. Bessarabian is the first floor of Sarmatian			
wt.: intercal. of sands and marls	thick:200-250		
-Upp.Bessarabian superior: yellowish-sandy and	thick: 50-400		ρ= 1.95-1.97
calcareous sand.			
Pliocene. Me contin. and discont., wt.: sands and	thick:150-250	$\Gamma_p = 1.1 - 1.15$	Filtrate low:
sandst. altern. wt. marls. Upp. and low.; upon sandy		Γ_p . current= 0.6-	2-3mm
blocks MI, MIII. Low.Meotian domin. by sands		0.5	
altern. wt. salm. waters in sedim. M.int, MIII and		$\Gamma_{fis} = 1.9 - 2.05$	
Upp. Meotian wt. grey-yell. sands altern. wt. oolitic		Γ_{fis} . current=	
marls		1.75-1.80	
Pontian has three blocks: marly-clayish, sandy-	thick: 50-500		Instab. of
marly, marls grey; sands wt. hydrocarb.at Măgurele		$\Gamma_t = 4^{\circ} C/m$	drill.fluid by
(written P and P1)			density increase
Dacian has two horizons: low. (slightly salmastre)	thick:400-500	Abnormal	
and upper, wt. freshwater.			
Romanian closes stratigr. sequence wt. marls,	thick: 1000		ρ= 1.98-2.10
strata of lignite (bottom), sand., gravel. (top).			
Quaternary wt. sediments across entire region by	thick: 1000		Filtrate wt. low
alluvia and proluvia wt.: gravels, sand. sandstones,			values: 1- 1.5mm
trovants wt. interc.de clays, marls wt. lignite.			

References

- 1. Batistatu, M.V. Teză de doctorat, Universitatea Petrol-Gaze din Ploiești, 1992.
- 2. Gheorghiţoiu, M. *Tehnologia forării sondelor* ("Technology of Well Drilling"), Partea I, Editura Universității Petrol-Gaze din Ploiești, Ploiești, 1990.
- 3. Gheorghiţoiu, M. *Tehnologia forării sondelor*, Partea a II-a, Editura Universității Petrol-Gaze din Ploiești, Ploiesti, 1994.
- 4. Tatu, Gr. Carnet tehnic forarea sondelor ("Technical Notebook of Well Drilling"), Editura Tehnică, Bucuresti, 1983.

O trecere în revistă a factorilor geologici care influențează echilibrul presiunilor în sondele adânci

Rezumat

In general, problemele mai importante care au fost tratate in acest articol sunt: principalii parametri si metodele de exprimare a presiunii de formație; caracterizarea complexă a unei coloane stratigrafice; analiza comparativă pe cele trei structuri: Colibași, Caragele și Piscuri-Filipești; principalele pericole și accidente de foraj ce pot să apară la sondă.