BULETINUL	Vol. LXVII	112 110	Corio Tohniož
Universității Petrol – Gaze din Ploiești	No. 1/2015	113 - 118	Seria Tehnică

Interpretation of Rock-Bits Wear

Dumitru Iordache

Liceul Tehnologic "Ludovic Mrazek", Str. Mihai Bravu, nr. 241, Ploiești e-mail: dumior.ghighiu@yahoo.com

Abstract

An analysis of the bit wear provides information about the consistency of a bit with the rock, about the future orientations of the manufacturing company, correctness of the drilling practice used in work and about the decisions made in selecting a next bit. There are several methods of encoding and analysing the bit wear. The onsite data taken in view of utilising rock bits can be used on three oilfields i.e.: Colibasi, Piscuri Filipesti and Caragea

Key words: wear, consistency, encoding, proposals of readjusting denominations, other factors of wear influence

Encoding of Bit Wear

A. Encoding of bit wear according to STAS:

Wear of Teeth is encoded for the three "D" types for excessive wear, (even), "DR" for teeth breakage and "DN" for uneven wear. Encoding of wears per each teeth row is assessed into % (quarters), of the teeth height, as follows: code"1" corresponds to 0...25% wear; code "2" corresponds to 25...50% wear; code "3" corresponds to 50...75% wear; code "4" corresponds to 75... 100% wear;

Wears can be of two types: by self-sharpening / bit dressing (code "A") and blunting (code "T"). Breakage of teeth are assessed into % (quarters) of the total number of each crown with codes 1...4 like in encoding of each row wear. For an example: d-(4T-2T-4T)(2T-2T-3A)(2T-2T-4T). This means: uneven worn teeth bit; in roller 1, rows 1 and 3 and in roller 3 row 3, wear of 75...100%; in roller 2, row 3, wear of 50...75 % and for the others, 25...50%. All wears are by blunting except for roller 2; row 3 that is worn by self-sharpening.

Wear of Bearings is shown by indicating: the general code of wear: "L" for proper wear and "LB" for blocked bearings; degree of wear, indicated within brackets per each roller cutter apart (in the order of the roller number) and by indicating the radial or axial (only the largest, into mm). Example of written down grading: L (1.5-1-2).

That signifies encoding of the wear of a bit having the bearing of roller 1 with a maximum clearance of 1.5mm, for the roller 2 the clearance is of 1mm, and for roller 3 the bearing maximum clearance is 2 mm.

B. Encoding of bit wear according to I.A.D.C. is the most frequently used worldwide and starting from 1999 it is also applied in Romania. The manner how rock bit wear occurs brings

essential information about what happens at the well bottom during work. Information refer to two aspects: bit consistency with the crossed formation and the drilling practice of the bit in the bottomhole. IADC established eight factors allowing for encoding of the wear of a rock bit. The first four refer to the active part or cutting structure and we have: internal cutting structure -1, external cutting structure -2, main wear - 3; location of wear on active part- 4; the next two refer to bearings and size (wear on diameter): bearings - 5, bit caliber-6; and the last two to atypical wear and because of bit withdrawal: other types of wear -7, cause of bit withdrawal - 8.

The tracking log of a bit includes 8 columns (table 1) each of which hosting one of the eight factors the significations of which will be presented hereinafter:

Inner Rows	Outer rows	Wear Feature	Location	Bearing Wear	Nominal Dia. Wear	0	R
1	2	3	4	5	6	7	8

Table 1. Bit Tracking Log

In column 1 wear is described of the inner area I (inner) of the active part and namely the one limited by a radius equal to 2/3 of bit radius measured from its centre towards outside. Because it expresses into eighths a linear scale is used from 0 to 8 in order to describe wear of cutting elements (teeth, nose, diamonds, tips of polycrystalline).

In column 2 wear is written for outer area **O** (outer) a circular crown with inner radius equal to 2/3 of the bit radius measured from centre to outside taking outer radius equal to bit radius.

Wear is also described into eighths as in previous case.

In column 3 the manner is specified how wear D (dull) occurs. Table 2 shows codes to add up column 3 (and 7) and their significations.

In column 4 the L wear location is shown. Location of wear (column 4) is encoded with roller bits by two elements: the first is a letter specifying the place on the roller along the generatrix of the teeth row and a cipher specifying the number of the roller -N (nose row), M (middle row) in the median area of the roller, H (heel row) on the basic crown, A (all rows) on all rows, on rollers 1, 2 or 3; in diamond bits wear is shown by one of the six initials of the various areas on active part: C (cone) on roller, N (nose) maximum prominence, T(roller) transition (elongation) area, S (shoulder) on the bit shoulder, G (gauge) on the size (overall) area and A (all) across all the active face.

In column 5 wear of bearings is written **B** (bear) and takes into respect the type of bearing. For open bearings there is a 0 to 8 linear scale (wear is depending on the time of rotation in the bottom versus the total service life of the bearing). 0 indicates a new bearing and 8 indicates a completely worn bearing. In sealed bearings (rolling of friction bearings) wear is marked by one of the following three letters - **E** (effective seal), **F** (failed seal), **N** (not able to grade), and for fixed cutting bits letter **X** is used – bits without bearings (diamond bits).

In column 6 wear is written per diameter (of gauging), G (gauge) is expressed into sixteenths of inch (1/16). The nominal diameter bit will have the code I (in gauge), there is no reduction of diameter. 1/16 stands for the reduction in diameter by this value. This wear is measured by means of the annular gauge. For roller bit rules 2/3 is applied. More specifically, the gauge is fixed so that to come in touch with two rollers outside while clearance in front of the third roller is multiplied by 2/3 ratio in order to establish the overall wear value.

In column 7 written with letter **O** (Other Dull Characteristics) the same symbols are used like in column 3, but also specifications are made about the state of wear of other areas of the bit.

In column 8 written with letter \mathbf{R} (Reason Pulled) the reason is shown for bit withdrawal. Symbols composed of two or three letters are written in Table 3 that are used in adding up the column.

Item	Code	Code meaning	Signification in English language	
1	BC	Broken roller	Broken Cone	
2	BF	Loss of polycrystalline tips	Bond Failure	
3	BT	Broken cutting elements	Broken Cutters/Teeth	
4	BU	Balled up bit (mud sleeves)	Balled Up	
5	CC	Fractured roller	Cracked Cone	
6	CD	Blocked roller	Cone Dragged	
7	CI	Roller coming in touch	Cone Interference	
8	CR	Central wear	Cored	
9	CT	Chip broken cutting elements	Chipped Cutters/Teeth	
10	ER	Erosion	Erosion	
11	FC	Crest flattening	Flat Crested Wear	
12	HC	Bit overheating	Heat Checking	
13	JD	Wear due to junk on bottom	Junk Damage	
14	LC	Bit overheating	Heat Checking	
15	LN	Expelled (lost) nozzle	Lost Nozzle	
16	LT	Lost cutting elements	Lost Cutters/Teeth	
17	OC	Eccentric wear	Off Centre Wear	
18	PB	Wear by pinches	Pinched Bit	
19	PN	Plugged nozzle/cooling channel	Plugged Nozzle/flow passage	
20	RG	Rounding across guiding area	Rounded Guide	
21	RO	Wear ring	Ring Out	
22	SD	Wear on jaws	Shirttail Damage	
23	SS	Wear by self-sharpening	Self-Sharpening Wear	
24	TR	Wear by hauling bit on bottom	Tracking	
25	WO	Bit washing out	Wash Out on Bit	
26	WT	Worn cutting elements	Worn Cutters/Teeth	
27	NO	Does not show any wear	No Dull Other Wear	

Table 2. Indicator 3 Featuring of wear D

Table 3. Causes for Bit Withdrawal

Item	Code	Code meaning	Signification in English language	
1	BHA	Change of the bottomhole assembly	Change Bottom Hole Assembly	
2	СМ	Conditioning of drilling fluid	Condition Mud	
3	CP	Sampling of mechanical core	Core Point	
4	DMF	Failure of bottomhole motor	Down Hole Motor Failure	
5	DP	Development of cement plug	Drill Plug	
6	DSF	Failure of drill string	Drill String Failure	
7	DST	Procedure for isolating and testing the pressure,	Drill Stem Test	
		permeability and productive capacity of a		
		geological formation during the drilling of a well		
8	DTF	Failure of operating tools	Down Hole Tool Failure	
9	FM	Change in the lithology of geological formation	Formation Change	
10	HP	Difficulties in drilling	Hole Problems	
11	HR	Achievement of times of keeping bit on bottom	Hours on Bit	
12	LOG	Performance of geophysical investigations	Run Logs	
13	LIH	Metallic remains in the bottomhole	Left in Hole	
14	PP	Raise of pumping pressure	Pump Pressure	
15	PR	Decrease of penetration rate	Penetration Rate	
16	RIG	Repairs in the drilling rig	Rig Repairs	
17	TD	Reaching of final casing depth	Total Depth/Casing Depth	
18	TQ	Table twisting momentum	Torque	
19	TW	Pipe breaking due to twisting.	Twist Off	
20	WC	Unfavourable climate conditions	Weather Conditions	
21	WO	Washout bit or drill string	Wash Out Bit or Drill String	

Proposals for Adaptation of Literal Code Signification in Some Bit Wear Featuring

Hereinafter we tried to adapt in tabular form the due meanings and explanations, as applicable, corresponding to the English significance for the main codes featuring wear (D), by means of words having letters identical, likely or at least half of them compared to English letters in the codes. I was successful in a percentage of 71-74%.

If English people explain it in as few words as possible (sometimes two or even a single one) why shall we, Romanian, use more and very often much more? Examples: "Rounded Guide", marked with symbol RG means "Rounding in the guiding area"- it could be more simply translated with "Guide rounding" or "Circling of guide" or "guide circle"- that is also a rounding as the name comes from "circle" which means "round shape"; or Cracked Cone, symbolised CC translated "fractured roller" could be adapted to "Chapped cone", that would be the same; or, for code CI- "cone interference" it could be said "interfered cones"... And the examples may continue. Below, my adaptations have been arranged in two tables (4 and 5).

For the causes of bit withdrawal before completion of the work, we propose the significations indicated in Table 5.

In view of an analysis in as much correct as possible, results were herewith considered that were obtained in utilisation of three roller rock bits both in the country in wells under patrimonial property of the SNP PETROM S.A. and abroad in wells of Kazakhstan performed by S.C. UPETROM FOSERCO S.A. for various beneficiaries under the same conditions of operation.

Moreover, other valuable information were obtained by consulting various specialty literature among which [1] and [5]; to the same extent, information related to bit drilling can be obtained directly from well logs concerning bit withdrawn, hydraulics, teeth, details from bits in the area, formation, fluid etc.

Item	Code	Code Meaning/ Proposed Signification	Signification in English
3	BT	Broken cutting elements/ Cutter breaking	Broken Cutters/Teeth
4	BU	Balled-up bit (mud sleeve muffed)./ Cuttings accumulation	Balled Up
5	CC	Cracked roller/ Broken cone.	Cracked Cone
6	CD	Locked roller/ Brought along cone (dragged or draggled).	Cone Dragged
7	CI	Roller interference/ interfered cones	Cone Interference
8	CR	Cantered wear/ Centralization of eating away (wear off).	Cored
9	СТ	Broken cutting elements/ Chipping of cutter(teeth)	Chipped Cutters/Teeth.
11	FC	Flattening on top / Shattering of crests.	Flat Crested Wear
12	HC	Overheating of bit/ Cone hot run	Heat Checking
14	LC	Cone left in the well/ lost cone	Lost Cone
15	LN	Expelled (lost) nozzle/ Lack of nozzle	Lost Nozzle
16	LT	Lost cutting elements/ lack of cutters	Lost Cutters/Teeth
19	PN	Nozzle/cooling channel being plugged / Obstructed passage (for nozzle or flow channel)	Plugged Nozzle/flow passage
20	RG	Rounding in guiding area / Guide rounding	Rounded Guide
23	SS	Wear by self-sharpening / Damaging of bit structure	Self-Sharpening Wear
24	TR	Wear by pulling the bit on bottom/ Hauling with rounding	Tracking
26	WT	Worn cutting elements/ Wear of cutters	Worn Cutters/Teeth
27	NO	No wear /Not worn	No Dull Other Wear

 Table 4 Signification proposed for codes

	Table 5. Signification proposed for some codes of oit withdrawar				
Item	Code	Code Meaning/ Proposed Signification	Signification in English		
2	CM	Conditioning of drilling fluid / Conditioning of mud (sludge)	Condition Mud		
3	СР	Sampling of a mechanical core / Sampled core	Core Point		
5	DP	Execution of a cement plug / Plug for well plug back (cement).	Drill Plug		
6	DSF	Damaging of the drill string / Drilling system damaging	Drill String Failure		
8	DTF	Failure of operating tools / Damaging of tools	Down Hole Tool Failure		
9	FM	Change in the lithology of the geological formation / Altered rock formation	Formation Change		
10	HP	Difficulties in drilling / Drilling problems/ Oilfield malfunctioning	Hole Problems		
11	HR	Achievement of bit bottomhole holding interval /Completed (drilled) hours	Hours on Bit		
12	LOG	Completion of surveys/ Logging	Run Logs		
13	LIH	Scraps left over the bottomhole / Metal interposed on bottom	Left in Hole		
14	PP	Increase in pumping pressure / Increased pumping pressure	Pump Pressure		
15	PR	Decrease of penetration rate / Slow-down penetration	Penetration Rate		
16	RIG	Repairs in the drilling rig / Repairs in string installation	Rig Repairs		
17	TD	Reach the ultimate depth / casing depth/ Finalised bottom	Total Depth/Casing Depth		
19	TW	Breaking of pipes due to twisting / Drill pipe twist off	Twist Off		
20	WC	Unfavourable climate conditions / Bad weather/ Weather conditions	Weather Conditions		

Table 5. Signification proposed for some codes of bit withdrawal

Conclusions

There is a multitude of factors contributing to the wear of drilling bits: some of them are related to the material or technology of manufacturing bit, other to the structure and slope of geological strata, and other are depending on the bit operation. Other factors (causes) as well as steps to be taken were presented in Table 6 (see next page) were also failing to observe requirements were presented for the concerned wells. On the three geological fields: *Colibaşi, Piscuri- Filipeşti* and *Caragele* one or several of these factors were encountered in many wells and in some cases one factor was encountered several times.

References

- 1. Gheorghiţoiu, M. *Mic îndrumar de utilizare a sapelor în foraj*, ("Brief Guide for selection of drilling bits"), Editura Universității Petrol-Gaze din Ploiești, Ploiești, 2010.
- 2. Gheorghiţoiu, M. *Tehnologia forării sondelor*,("Technology of Well Drilling"), Partea I, Editura Universității Petrol-Gaze din Ploiești, Ploiești, 1990.
- 3. Gheorghiţoiu, M. *Tehnologia forării sondelor*, Partea II, Editura Universității Petrol-Gaze din Ploiești, Ploiesti, 1994.
- 4. Iordache, D. *Interpretarea uzurii sapelor cu role* ("Interpretation of the wear of roller bits") Ph.D. Thesis Dissertation, Universitatea Petrol-Gaze din Ploiești, 2008.
- 5. N e a c ş a , A . *Studiul fiabilității sapelor de foraj cu trei conuri şi al posibilităților de îmbunătățire a acesteia* ("Reliability study of three roller drilling bits and of the possibilities of improving their dependability in operation"), Teză de doctorat, Universitatea Petrol-Gaze din Ploiești, 2007.

Table 6. Other possible causes and actions to prevent roller bits from getting worm			
Causes	Failed Requirements	Preventing Actions	
Bit low mechanical strength	Inadequate selection of bit	Reconsidering bit selection	
Little traces (scratches) left	Torque increase may lead to starting	Change in diameter and	
by rocks on the bit	first cracks	tapering (crest angle) =bit	
		selection upon soil structure	
Inadequate ratio generatrix	Incorrect length and diameter affects	Adequately set out length and	
length versus bit diameter	accuracy of borehole	diameter	
Tungsten carbide/ other	Strength of cross section less cutting	Use of wear-resistant tungsten	
material, improper.	strength	carbide (WC) materials	
Bit not correctly balanced	Evenness of the hole gets damaged	Check geometrical points	
(centring error, difference in	after using asymmetrical bits showing	opposite to rollers and bit	
height and roller offsetting).	wobble, height difference/ roller		
	offset		
Excessive diameter at taper	Increased strength on cutting and	Check out the good part after	
part outside the bit.	occurrence of cracks	bit withdrawal	
Decreased load.	Increase in load decreases accuracy	Apply the right load according	
	of hole and generates problems	to drilling practice.	
Overload	Cuttings plugging mark the bit and hole	Apply proper fluid and	
	due to increasing the pulling force	drilling practice	
High speed of rotation axis	Due to an increase of cutting load	Apply the adequate RPM	
(high RPM)	rollers/bearings may damage/break		
Low RPM of the bit	Increasing the friction coefficient	RPM shall be increased	
	leads to wear and breakage of rollers		
	and bearings		
Construction material and/or	The bit "jumps" out of contact with	Adequate conditions shall be	
thermal/ thermochemical	rock surface and gets worn and failed	observed to be according to	
treatment are improper		the cutting practice	
Improper drilling practice	Removal of cuttings may lead to	Recalculate the drilling	
	plugging and bit wearing	parameters involved	
Thrust over allowed limits	Rocks generating more cuttings	Apply a more adequate regime	
High alternation of layers	Increased cutting loads and	More moderate drilling	
	occurrence of cracks	practice	
Overstressed rollers	Increase and interruption of cutting loads	Reconsider another regime of bit	
Imprints of hits on bit	They may generate deviation and	More detailed checkout of bit	
cutting areas	breakage of some elements	on entering it downhole	
Improper hardness of bit	Cutting elements become brittle, jump	Reconsider thermal and	
	and accumulate scrap in the well	thermochemical treatments	
High stiffness of elements	Indent, cracking and breakage of	Reconsider the stiffness of	
	elements	elements	
Uneven area of previous bit	It can lead to hole deviation, cracking	Run-in shall be done to proper	
and insufficient run-in	and breakage of elements	parameters	
Uprightness of bit, drill	It leads to uneven wears, deviation	Have derrick, drill string, bit	
string		balanced	
Low tightening of bit	Uneven wears, scrap in the well (JD)	Check out the tightening torque	

Table 6. Other possible causes and actions to prevent roller bits from getting worn

Interpretarea uzurii sapelor cu role

Rezumat

Analiza uzurii sapei dă informații despre compatibilitatea sapei cu roca, despre viitoarele orientări ale firmei constructoare, corectitudinea regimului de foraj aplicat și despre deciziile de alegere a sapei următoare. Există mai multe metode de codificare și de analiză a uzurii sapei.