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ABSTRACT  

In a wastewater treatment plant (WWTP) there are several different, intricate processes 

with a dynamic and nonlinear behaviour. The fact that these processes are nonlinear, some 

of them having a high degree of nonlinearity, as is the wastewater pH neutralization 

process, comes with a number of problems related to their modelling and control. The 

identification of any method that can be used to simplify the modelling and control of 

such a high nonlinear process, it is a desideratum to ensure a quality effluent of the plant, 

because its water quality is affected by the treated wastewater discharged into it. The 

Deep Learning (DL) and Machine Learning (ML) techniques offer incredible solutions 

that can be explored in order to find out the optimal tool that can be used for wastewater 

pH treatment process modelling. In the present paper, seven DL solutions were 

implemented and tested in order to identify the most appropriate DL method for 

modelling this type of process, method that ensures the best result. The analysed DL 

methods are Feedforward Neural Networks (FNNs), Temporal Convolutional Networks 

(TCNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), 

General Regression Neural Networks (GRNNs), Time Delay Neural Networks (TDNNs) 

and Deep Belief Networks (DBNs), being implemented using Python 3.9 software and 

Tensorflow. The analysis made with the mentioned DL methods, was based on knowing 

the flowrate of the acid reactant (which was maintained constant), the initial alkaline 

reactant flowrate in the treated solution, the initial pH level, and the desired pH level, 

with the final goal of predicting the required quantity of alkaline reactant flowrate 

necessary to obtain a neutral pH.  

Keywords: deep learning, machine learning, wastewater treatment plant, neural 

networks, wastewater pH neutralization, process modelling 

 

INTRODUCTION  

The wastewater treatment processes from a WWTP are varied and complex ones, with a 

high level of disturbance variability. One of the most important aspect is that these 

processes are nonlinear, some of them presenting high nonlinearity, as is the wastewater 

pH neutralization process. From all the plant chemical processes, the wastewater pH 

neutralization process has a dynamic behaviour and a high nonlinearity given by the static 

characteristics (titration curves) shape. There is a strong pH variation around the 

equivalence point (pH≈7 units), variation that is influenced by the reactant (acid or 
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alkaline type) nature and concentration, being highlighted the fact that a reduction in 

reactants concentration leads to a pH variation reduction around the equivalence point. 

Also, it was established through laboratory experiments, that the pH value has a strong 

variation even when it is added a small amount of acid or alkaline type reactant, the 

process being very instable around the equivalence point. Also, the neutralization process 

nonlinearity of a strong acid with a strong alkaline is more pronounced, than in the case 

of a week acid with a strong alkaline reactant neutralization [2, 6, 7, 16, 21, 26].  

In Figure 1, is presented the wastewater pH neutralization process block diagram from 

the author perspective, with the associated transducer (pH-meter), actuators (sulphuric 

acid and hydrated lime reactants dosage pumps), the acid reactant flowrate (F1) and its 

concentration (C1), the hydrated lime flowrate (F2) and its concentration (C2), stirrer and 

the process admixture reaction tank. 

 
Figure 1. Wastewater pH neutralization process block diagram 

 

Due to the fact that the wastewater pH neutralization process from a WWTP is very hard 

to model or control using conventional tools (PID algorithms and Gain-Scheduling PID), 

the goal is to identify that DL method which is more suitable to model such a high non-

linear process [6, 7]. It is known that machine learning (ML) and DL are both artificial 

intelligence (AI) subdomains with large application in wastewater treatment domain. So, 

in paper [5], were compared six ML techniques (decision tree regression, linear 

regression, k-nearest neighbours regression, support vector machine regression, gradient 

boosting regression and random forest regression), establishing the most efficient ML 

regression algorithm (respectively, the gradient boosting regression) for modelling the 

wastewater pH neutralization. As a continuation, the present article aims to identify that 

DL method, from the analysed ones (RNNs, TCNs, FNNs, TDNNs, DBNs, GRNNs and 

LSTM) which is more suitable to model such a high non-linear process. The novelty is 

given by the identification of a useful tool (a DL based ANNs method) that can be 

successfully applied for an efficient and time-saving modelling of a dynamic and high 

nonlinear process, like wastewater pH neutralization from a WWTP. The identified tool 

can be successfully applied in developing data-driven type models dedicated to high 

nonlinear treatment processes from a WWTP, with real benefits for the plant human 

operator in the decision making process.  
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DEEP LEARNING METHODS APPLIED IN WASTEWATER TREATMENT 

PROCESSES 

Deep Learning is a subset of ML, while ML is an artificial intelligence (AI) technique. 

So, ML is an AI technique that can automatically adapt with minimal human intervention, 

while DL is a subset of ML that uses ANNs in order to reproduce the human brain learning 

process. DL is better than other (non-AI) methods because it can handle non-linear data, 

can solve regression problems, can use data of different types and solve problems of 

different complexities, with promising results (due to the integration of neural networks 

advantages into the provided methods) in modelling complex and non-linear wastewater 

treatment processes [1, 3, 28]. DL can learn from its own errors, while ML needs the 

human expertize, requiring much more computational power than ML [8]. According [3], 

DL is a technique based on Artificial Neural Networks (ANNs) through which a complex 

process can be modelled by learning from examples of the process inputs and outputs. 

Respectively, through DL are extracted essential features from raw input data by 

organizing the artificial neurons (computational processing units) into layers with a 

certain hierarchy. A DL model once trained for a certain task with measured data, it can 

be used to generate the process outputs from previously unknown input data. When the 

neurons are hierarchical connected (the connections weights supplies the model response) 

into a number of layers (connected by activation functions) they form a so-called deep 

neural network that can be trained (the inputs and outputs weights are adjusted) to 

optimize the neuron weights in order to increase the accuracy of the predicted outputs.  

For wastewater treatment process modelling (by which are obtained data-driven type 

models) a wide range of DL algorithms (supervised or unsupervised learning techniques) 

is used, such as: RNNs, TCNs, FNNs, TDNNs, DBNs, GRNNs, LSTM, Convolutional 

Neural Networks (CNNs), Gated Recurrent Unit Networks (GRUs), Deep Reinforcement 

Learning (DRL) and other hybrid algorithms [24]. Such DL algorithms are applied for 

process simulation, respectively for predicting a WWTP effluent performance and also 

for predicting various effluent parameters (chemical oxygen demand-COD, biochemical 

oxygen demand-BOD, nitrate, etc.) [3, 12, 15]. Also, both supervised and unsupervised 

DL methods are used in process control and automation, in state estimation and soft 

sensing for estimated the process variables that are difficult to measure directly, data pre-

processing (respectively, pattern discovery and decision-making process improving) and 

wastewater treatment design, optimization and control [3, 9, 10, 13, 22, 23, 30]. So, DL 

algorithms usage in WWTP processes comes with various benefits for the plant operators 

regarding the decision making process and also in the development of data-driven type 

applications dedicated to the plant operators.  

From the mentioned DL algorithms, based on ANNs, with applications in wastewater 

treatment processes domain, in the present paper were analysed seven DL algorithms, 

respectively RNNs, TCNs, FNNs, TDNNs, DBNs, GRNNs and LSTM, in order to 

identify that DL method suitable for wastewater pH neutralization process modelling. 

These DL algorithms have been selected due to their use in similar non-linear processes 

and due to the fact that are able to handle large and complex data (as other DL algorithms 

do), being a limited selection of them, in order to test their performances in non-ideal 

circumstances, and to compare all of their results to evaluate their performance for this 

complex task [3, 5, 9, 12, 15, 22, 29]. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjNusPwkr2HAxUURvEDHU9dBHMQFnoECBMQAQ&url=https%3A%2F%2Fwww.geeksforgeeks.org%2Fdeep-belief-network-dbn-in-deep-learning%2F&usg=AOvVaw1cQl01w-B0wzSPl1pvVKFy&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjNusPwkr2HAxUURvEDHU9dBHMQFnoECBMQAQ&url=https%3A%2F%2Fwww.geeksforgeeks.org%2Fdeep-belief-network-dbn-in-deep-learning%2F&usg=AOvVaw1cQl01w-B0wzSPl1pvVKFy&opi=89978449
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RNNs are a type of DL algorithm, respectively are a type of ANNs that are using in the 

learning process training data (sequence data or time series data). To influence the current 

input and output (dependent by the previous elements), RNNs are using information from 

previous inputs. Between each network, they are sharing the same weight parameters, 

respectively the weights are adjusted once more through backpropagation through time 

(BPTT) algorithm (the model trains itself by determining the errors from its output layer 

to its input layer) in order to determine the gradients [14, 31]. According [29], RNNs are 

suitable for handling sequential data, being an excellent tool for developing predictive 

models for sequential big data in WWTPs.[14, 31] 

According [32], TCNs are a type of ANN architecture that in order to identify temporal 

dependencies in data uses dilated convolutions, respectively it uses 1D convolutional 

architecture (dilated convolutions), each layer having information regarding all the 

previous layers outputs. In the training process it is used a residual block structure 

(containing a set of dilated convolutions), an addition operation (for adding the input to 

the block output) and non-linear activations. An advantage of TCNs is the parallel 

computing of the input sequence elements, with effects in the training and inference 

process time reducing. TCNs are deep neural networks that surpass in performance RNNs 

in task as time-series data, audio synthesis and handwritten recognition [20, 25].  

According [32], TCNs is a class of DL models suitable to handle sequence data, having 

applications in time series forecasting, sequence classification, anomaly detection, etc.  

FNNs are basically ANNs often used for classification, in which all the information is 
only passed forward, respectively the knots do not have loops. The data is passed to the 

input nodes, then to the hidden layers and to the output nodes (there is no possibly to send 

back information from the output node). As they enter into the layer, the inputs are 

multiplied with weights this way being obtained the sum (if the values rise above an 

established thresholds, the output is 1, otherwise is -1) parameter. Through back-

propagation, the weights are adjusted and the networks hidden layers are adjusted 

according to the output values produced by the final layer. Some FNNs applications are 

automation and machine management, physiological feed-forward system, parallel feed-

forward compensation, gene regulation and feed-forward, etc [18, 27]. 

According [17], TDNNs are a 1D convolutional type neural network, without pooling and 

with dilations, respectively is a multilayer ANN architecture used for patterns 

classification with shift-invariance, in modeling the context of each layer of a network, 

etc. Are similar to feedforward networks, with the only difference that the input weight 

has associated a tap delay line (fact that ensures the TDNNs dynamic response to time 

series input data), each TDNNs layer operating at a different temporal resolution. 

DBNs are a type of DL algorithm that are using layers of stochastic latent variables (called 

feature detectors). The difference between DBNs and classical ANNs is given by the fact 

that DBNs can be generative and discriminative models. They are containing an input 

layer with one neuron per input vector, a number of intermediate layers and a final layer 

were outputs are generated using the probabilities derived from previous layers' 

activations. DBNs are a more efficient version of feedforward neural networks, used for 

video sequences, motion capture data, speech recognition, image recognition and much 

more [19].   
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GRNNs are a type of radial neural networks (a feed forward ANN type model), that uses 

the nonparametric regression in which the training samples are in fact the mean of the 

radial basis neuron. They can be used for prediction, regression, classification, for 

modeling dynamical systems, etc. As a structure, they present four connected layers (with 

a certain number of neurons), respectively the input layer, the pattern layer, the 

summation layer and the output layer. In the GRNNs training process (which is a very 

fast process-the main advantage of GRNNs) the goal is to find the position where mean 

squared error (MSE) in minimum. Also, the GRNNs learning process from training data 

is much faster than the time need to train a standard feed-forward network [4, 11].  

LSTM is a type of RNN capable of learning long-term dependencies in sequence 

prediction problems, being useful for solving complex problems, such as speech 

recognition, machine translation, etc. They resemble with RNNs but in the case of LSTM 

each recurrent node is replaced by a so called memory cell which contains the internal 

state (a node with a self-connected recurrent edge of fixed weight 1). The RNNs have 

long-term memory (weights) and short term memory (ephemeral activations), while 

LSTM uses an intermediary type of storage under a memory cell form [31].  

 

THE COMPARATIVE STUDY OF THE ANALYSED DEEP LEARNING 

METHODS 

For the mentioned DL (ANNs based) algorithms testing, were used data for a series of 

four hundred and twenty-seven distinct scenarios (collected over one year and two months 
period of time) associated with the studied wastewater pH neutralization process from a 

Romanian refinery. The main objective was to analyse the evolution of the alkaline 

reactant (Ca(OH)2) final flowrate (F2f) necessary for neutralizing an acid type pH, 

considering the acid reactant (H2SO4) flowrate (F1) which was maintained constant, the 

initial alkaline reactant flowrate (F2i) and also the initial (pHi) and the final (pHf) 

wastewater pH value. The pH neutralization process mathematical model and its 

validation for the flowrates and volume used in the studied plant from a Romanian 

refinery through a set of experiments are presented in [5, 6, 7]. The analysed data 

(selection) structure is presented in Table 1, data that make up the csv type file necessary 

for analysing the DL methods with Python 3.9 software and Tensorflow. 

 

Table 1. The analyzed data (selection) structure that compose the csv file [5, 6, 7] 

Sample F1 [liters/hr] F2i [liters/hr] pHi [units] pHf [units] F2f [liters/hr] 

1 260 6150 2.6 7 6595.84 

2 260 5704 2.7 2.755 5750 

3 260 5704 2.7 2.82 5800 

… … … … … … 

426 260 6148 6.99 7 6149.84 

427 260 6148 6.99 7 6150 
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The data from the csv type developed file were divided into three different sets of data, 

respectively three hundred and forty-two entries (three hundred eight were used for 

training, while thirty-four were used for validation) were used for ANN training and 

validation, and eighty-five were used for test dataset.  

In order to obtain a fair comparison, all of the analyzed DL methods have a similar 

number of trainable parameters, respectively around one hundred and twenty thousand 

trainable parameters, these parameters reflect the components of an individual neuron that 

is be presented below (Figure 2), with the model being trained in one thousand epochs 

(the epochs number used for training each tested DL method was established through 

experimental testing, respectively through an error testing process), using Adaptive 

Moment Estimation (ADAM) algorithm and Mean Squared Error (MSE) function. A 

representation from the author perspective of a neural network architecture for the 

analyzed process is presented in Figure 2: 

 

Figure 2. The ANN proposed architecture  

 

In Figure 3, is presented, from the author perspective, the individual nodes of an ANN 

layer, where with beige color are represented the input nodes from the previous layer. 

Each input node has an input (I1, I2,…, In) and a weight (W1, W2, …,Wn), which alongside 

a bias are inputs to an activation function (in this case, a non-linear function called 

Rectified Linear Unit - ReLU), while the results of this function is the node output.  

 

Figure 3. The structure of an individual node 
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The first DL method that was tested it was FNNs, the authors contribution being the ANN 

implementation that contains nine layers of densely interconnected nodes that start at four 

nodes and double in number up to two hundred and fifty-six nodes (it uses ReLU 

activation function), followed by a Dropout layer that ignores twenty percent of the data 

to prevent the network from overfitting, while the final layer is a dense layer that contains 

just one node as output. In comparison with the original FNNs, the improved method 

contains Dropout layers to prevent overfitting and the initial input layer was integrated 

into the dense layers. After it was trained for a thousand epochs, a test was conducted in 

order to measure the ANN parameters, and a graph was achieved in order to visualize the 

testing data. As such, Figure 4 represents the results between the real values obtained 

experimentally (represented in blue), and the predicted values (represented in orange). 

 

Figure 4. FNN graph that shows the performance on the testing data 

 

The values from Figure 4 shows a clear lack of task understanding, as it has given similar 

output values ignoring the input values.  

The TCNs is the second DL method that was implemented, the authors contribution being 

its implementation, that contains eight 1D Convolution layers that return the output filter 

starting at four and it doubles to a total nodes number of two hundred and fifty-six (it uses 

ReLU activation function), then dropping to sixty-four to keep the number of parameters 

identical. It is followed by a Dropout layer that ignores twenty percent of the data to 

prevent the network from overfitting, a Flatten Layer to flatten the output to the correct 

size, while the final layer is a dense layer that contains just one node as output.  

In comparison with the standard TCNs, the improved method contains Dropout layers to 

prevent overfitting and the input shape was integrated into the convolution layers, with a 

given padding of causal and a standard kernel_size of 2. After it was trained for a 

thousand epochs, a test was conducted in order to measure the ANN parameters, and a 

graph was made with the intent to have a way to visualize the testing data. As such, Figure 

5 represents the results between the real values found experimentally shown in blue, and 

the predicted values shown in orange. As it can be observed in Figure 5, the values show 

a pretty good performance.  
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Figure 5. TCNs graph that shows the performance on the testing data 

 

The RNNs is the third DL method that was tested, the authors contribution being its 

implementation that contains three layers of SimpleRNN layers, the first layer containing 

thirty-two nodes and having a return sequence, the second layer containing one hundred 

and twenty-eight nodes with a return sequence, while the last layer contains two hundred 

and fifty-six nodes without a return sequence, being the last SimpleRNN layer, followed 

by a Dropout layer that ignores twenty percent of the data to prevent the network from 

overfitting. Also, it contains a Flatten Layer to flatten the output to the correct size, while 

the final layer is a dense layer that contains just one node as output. In comparison with 

the standard RNNs, the improved method contains Dropout layers to prevent overfitting 

and has integrated the input shape into the RNN layers, with a set return sequence for 

better performances. It was tested to determine its parameters after training in thousand 

epochs, and a graph was created to provide a mean of visualizing the test results. 

Consequently, Figure 6 illustrates the differences between the actual values obtained 

experimentally, indicated in blue, and the predicted values, indicated in orange. As it can 

be observed, the graph's values presented in Figure 6 indicate generally good 

performance. 

 

Figure 6. RNNs graph that shows the performance on the testing data 

 

The Long Short-Term Memory (LSTM) is the fourth DL method that was implemented, 

the authors contribution being its implementation that contains a layer of one hundred 
LSTM nodes and Dropout of twenty percent of data to prevent overfitting. The first layer 



Romanian Journal of Petroleum & Gas Technology 

Vol. V (LXXVI) • No. 2/2024 

 

 

 

139 

of LSTM nodes has a return sequence, the layers that contain nodes are using the ReLU 

activation function, the final layer containing just one node as the output. In comparison 

with the standard LSTMs, the improved method contains Dropout layers to prevent 

overfitting and has integrated the input shape into the LSTM layers, alongside the return 

sequence for better performances. A test was made to determine the ANN parameters 

after has been trained for a thousand epochs, and a graph was created to provide a visual 

representation of the test results. The results between the actual values (indicated in blue), 

and the predicted values (indicated in orange), are thus depicted in Figure 7. As it can be 

observed, the LSTM performance is fairly good. 

 

Figure 7. LSTM graph that shows the performance on the testing data 

 

The GRNNs is the fifth DL method tested, the authors contribution being the 

implementation of five layers of densely interconnected nodes that start at sixty-four and 

double the number of nodes to two hundred and fifty-six nodes, the last layer having 

sixty-four nodes, using the Radial Basis Function (RBF) activation function, followed by 

a Dropout layer that ignores twenty percent of the data to prevent the network from 

overfitting with the final layer containing one node as the output. In comparison with the 

standard GRNNs, the improved method contains Dropout layers to prevent overfitting 

and has integrated the input shape in the dense layers. The ANN was tested to determine 

its parameters after a thousand epochs of training, and a graph was created to provide a 

means of visualizing the test results. Consequently, Figure 8 illustrates the differences 

between the actual values (indicated in blue), and the predicted values (indicated in 

orange). As it can be observed, the graph's values indicate generally good performance. 

 

Figure 8. GRNNs graph that shows the performance on the testing data 
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The TDNN is the sixth DL method tested, the authors contribution being the configuration 

of five layers of densely interconnected nodes, starting at sixty-four nodes and double the 

number to two hundred and fifty-six nodes, the final layer being made from sixty-four 

nodes, using the ReLU activation function, followed by a Dropout layer to prevent the 

network from overfitting, a flattening layer, with the final layer containing one node as 

output. This DL method is similar to a FNN, but uses a different data format, as it requires 

a delay in order to process the data. In comparison with the standard TDNNs, the 

improved method contains Dropout layers to prevent overfitting and has integrated the 

input shape into the dense layers. 

After it was trained for a thousand epochs, a test was conducted in order to measure the 

parameters of the ANN, and a graph was made with the intent to have a way to visualize 

the testing data. As such, Figure 9 represents the results between the real values shown in 

blue), and the predicted values (shown in orange). 

 

Figure 9. TDNN graph that shows the performance on the testing data 

 

The values presented in Figure 9 show even worse performance that the FNN, as the data 

seems almost random. The DBNs is the last DL method that was tested., the authors 

contribution being the configuration of four layers of auto encoders, using the ReLU 

activation function for encoding, and Sigmoid activation function for decoding, followed 

by a Dropout layer of twenty percent to prevent the network from overfitting, a flattening 

layer, with the final layer containing one node as the output. This DL method uses four 

of these unsupervised individual networks trained in fifty epochs and then the entire 

model was trained for one thousand epochs. In comparison with the standard DBNs, the 

improved method contains Dropout layers to prevent overfitting and has integrated the 

input shape into the dense layers, with a different shape of each group of auto encoders, 

depending on the group needs. 

This type of ANN was tested in order to determine its parameters after a thousand epochs 

of training, and a graph was created to provide a visual representation of the test obtained 

results (Figure 10). Consequently, Figure 10 illustrates the differences between the actual 

values (indicated in blue), and the predicted values (indicated in orange). As it can be 

observed, the values from the graph show pretty good performance. 
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Figure 10. DBN graph that shows the performance on the testing data 

 

In table 9, are centralized the metrics obtained for each analyzed DL method, respectively 

explained variance score (Ex. var. score), R2 score, mean absolute error (Mean abs. err.), 

Mean Absolute Percentage Error (MAPE) and median absolute error (Med. Abs. err.).  

Table 9. The analyzed DL methods performance 

DL 

method 

Ex. var. 

score 

R2 score Mean abs. 

err. 

MAPE Med. abs. err. 

FNNs 0.00043232 -0.00131538 41.72491143 0.006908723 21.243662109 

TCNs 0.99055991 0.98765102 6.065544377 0.000989174 3.074375000 

RNNs 0.98539030 0.98502588 3.832001726 0.000617391 1.832363281 

LSTM 0.97941211 0.97941209 4.756412836 0.000777157 2.603603516 

GRNNs 0.97693499 0.97564787 3.524922102 0.000585175 1.100009766 

TDNNs -0.18721870 -0.19238707 52.26995284 0.008613375 25.59919922 

DBNs 0.961275065 0.961180891 6.867442315 0.001150351 3.063144531 

 

It can be observed from Figure 4 and table 9, that FNNs has performed really poorly, 

being very far from the ideal solution for data prediction necessary for an optimal 

wastewater pH process modelling. While FNNs usually are not a bad choice, for the 

current task are not recommended, being available better DL solutions. From Figure 5 

and table 9, it can be observed that the TCNs method has performed well, being a solid 

choice for data prediction and wastewater pH neutralization process modelling. While a 

regular Convolutional Neural Network (CNN) has applications in object detection and 

image classification, a TCN can also be used for the presented task of predicting the 

values of F2 final flowrate while knowing the initial inputs. Regarding RNNs, from 

Figure 6 and table 9, it can be observed that they have performed well, being a solid 

choice for wastewater pH process modeling. The LSTM and GRNNs methods has 

performed well (Figure 7, Figure 8 and table 9), being a solid choice for wastewater 

process modelling. From the obtained results presented in Figure 9 and table 9, it can be 

observed that the TDNNs has performed really poorly, being very far from the ideal 

solution for data prediction, not being a viable solution for wastewater neutralization 



Romanian Journal of Petroleum & Gas Technology 

Vol. V (LXXVI) • No. 2/2024 

 

 

 

142 

process modelling. While a TDNNs is not a bad choice for speech recognition, for the 

task in question is not a viable solution, other methods being more suitable for modeling 

such a process. Also, from Figure 10 and table 9, it can be observed that the DBNs method 

has performed well, being a solid choice for data prediction and wastewater neutralization 

process modelling.  

In Figures 11-15, are compared each analyzed DL method using each obtained metrics 

(which green is highlighted the best method based on a specific metric), in order to 

determine which DL method from the analyzed ones is the most suitable for predicting 

the final F2 flowrate necessary to obtain a neutral wastewater pH, respectively the best 

DL method that can be used in modelling a such high nonlinear process, as is the 

wastewater pH neutralizing. 

 

Figure 11. Explained variance score comparison 

 

 

Figure 12. R2 score comparison 

 

 

Figure 13. Mean absolute error comparison 
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Figure 14. Mean absolute percentage error comparison 

 

 

Figure 15. Median absolute error comparison 

 

From the presented results (table 9, Figure 11-15), the best performer for the explained 

variance score metric is TCNs DL method, being a little bit better that RNNs, the worst 

performance being obtained for FNN and TDNN. The best performer for R2 score metric 

is TCNs, being a little bit better that RNNs, the worst performance being also obtained 

for FNNs and TDNNs. The best performer for mean absolute error metric is GRNNs, 

being a little bit better that RNNs, the worst performance being again confirmed for FNNs 

and TDNNs. The best performer for MAPE metric is GRNNs, being a little bit better that 

RNNs, the worst performance being for FNNs and TDNNs. The best performer for 

median absolute error metric is GRNNs, being a little bit better that RNNs, the worst 

performance being for FNNs and TDNNs. 

After comparing all the analyzed DL methods, the best performer out of them is GRNNs, 

with RNNs as the second best performer being slightly worse. Despite not being the best 

in a category, it is the second best performer for all the performance metrics compared. 

 

CONCLUSIONS 

The results presented in this paper, are promising. All seven DL methods has been tested 

and their performances have been analysed for the case of a dynamic and high nonlinear 

wastewater treatment process. So, the best DL method for the wastewater pH 

neutralization process modelling was identified to be General Regression Neural 
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Networks (GRNNs) and Recurrent Neural Networks (RNNs), while the worst have been 

identified to be the Feedforward Neural Networks (FNNs) and Time Delay Neural 

Networks (TDNNs). While Long Short-Term Memory (LSTM), Deep Belief Networks 

(DBNs) and Temporal Convolutional Networks (TCNs) are not the worst choices, their 

performance isn’t as high as the other two DL methods (being solid choices that can give 

accurate data). The size of the models has been significantly restricted in an attempt to 

maintain a fair comparison without architectures of millions of trainable parameters, as 

the goal was to compare the performances between DL methods, not to create the most 

efficient neural network architecture for this goal. 

The author contribution was the implementation of seven DL methods using Python 3.9 

software and Tensorflow and the identification of a suitable DL method (in this case, 

GRNNs DL method being found the best) that can be applied for predicting the reactant 

(F2-hydrated lime) final flowrate necessary to obtain a neutral pH, in wastewater pH 

neutralization process modelling, respectively in developing data-driven type models 

dedicated to high nonlinear treatment processes from a WWTP, with real benefits for the 

plant human operator in the decision making process.  

It was a continuation of the work presented din paper [5], were the best ML regression 

method that can be used for modelling the wastewater pH neutralization process was 

identified to the gradient boosting regression (GBR), while in the present paper the best 

DL based ANN method that can be used with the same goal, was identified to be the 

GRNNs method.    

As future work the size and the complexity of the best performing architecture can be 

scaled up and can be modified in order to supply extremely accurate data in order to be 

integrated into a system that can control the entire wastewater pH neutralization process. 

Also, a comparison of the best DL methods with other methods (non-AI based, and other 

AI methods) can be achieved. 
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