

IMPROVEMENT OF THE DRINKING WATER SUPPLY NETWORK BY STRENGTHENING PRODUCTION USING DRILLING TECHNICS – CASE OF THE MOKALI QUARTER IN THE KIMBANSEKE TOWNSHIP, DR CONGO

Emmanuel Biba Kalengo ^{1,2,5,6*} (D)

Glory Munkama³

Ley Luyi Mpata¹

Samuel Diangitukulu¹

Leonard Kabeya Mukeba Yakasham 4,7

- ¹ Faculty of Oil, Gas and Renewable Energy, Université de Kinshasa (UNIKIN), Kinshasa, DR Congo
- ² Faculty of Sciences Rabat, Université Mohammed V, Rabat, Morocco
- ³ Faculty of Hydraulic and environment, Institute National des Bâtiments et Travaux Publics (INBTP), Kinshasa, DR Congo
- ⁴ Mechanical Engineering Department, Institute Supérieur des Techniques Appliquées (ISTA), Kinshasa, DR Congo
- ⁵ Centre Régional Africain des Sciences et Technologies de l'Espace en Langue-Française (CRASTE-LF) affiliated to the United Nations, Rabat, Morocco
- ⁶ African Network for Solar Energy (ANSOLE), Kinshasa, DR Congo
- ⁷ Academy of Sciences and Engineering for African Development (ASEAD), Kinshasa, DR Congo
- * e-mail: bibaemmanuel5@gmail.com; emmanuel_bibakalengo@um5.ac.ma

DOI: 10.51865/JPGT.2025.01.04

ABSTRACT

Everyone is aware that access to or the search for drinking water is one of the major problems that bother all of humanity. The quarter of MOKALI, in the Kimbanseke township in the Democratic Republic of Congo, also faces challenges in ensuring an adequate supply of drinking water. Current infrastructures, designed several decades ago, are struggling to meet the growing demands of the population. This study focuses on improving the drinking water supply network by strengthening water production through the implementation of advanced drilling technics. Recent studies have highlighted the effectiveness of drilling as a method of accessing deeper aquifers, less prone to contamination and more sustainable over time [1]. In Mokali quarter, the integration of these techniques has not only improved water availability, but also reduced reliance on surface water sources, which are often polluted and unreliable [2],[3]. The use of rotary drilling technology, in particular, has enabled the extraction of high-quality groundwater from depths previously considered inaccessible [3]. The implementation of these technics was coupled with the modernization of the water distribution network, ensuring that the increase in production capacity directly translates into better access for the local population [3],[4]. The results of this study indicate a significant reduction in water shortage incidents and an overall improvement in public health outcomes in Mokali

quarter. The success of this project suggests that similar strategies could be applied effectively in other regions facing comparable challenge.

Keywords: water supply network, drilling technics, deeper aquifers, Mokali district, Kimbanseke, groundwater

INTRODUCTION

The harmonious development of any economy has always and everywhere been subordinated to the control of water. Access to drinking water is an important issue in the world. All humanity continues to need drinking water in sufficient quantity and quality for a multitude of tasks, and the quality of this water influences the health of the population [2]. Like many African metropolises, the city of Kinshasa is facing exponential population growth and consequently the need for water is great. Unfortunately, this growth is not always followed by the development of certain basic infrastructures to promote economic and social growth in order to ensure the well-being of the population.

In the latter, water distribution is ensured by REGIDESO which today is experiencing enormous difficulties which prevent this service from distributing drinking water in sufficient quantity and quality, thereby leading to the absence of water. total or partial within the population [18]. This disruption in water distribution results in several phenomena, namely: insufficient pressure in the neighborhood, insufficient overall resource which can lead to a cessation of distribution during peak hours, aging of the pipes, etc. We may have a sufficient overall resource but it is poorly distributed during the peak day, thus causing a shutdown of distribution for part of that day [2],[7].

However, the Mokali quarter, one of the quarters of the Kimbanseke township, is not immune to these types of phenomena. It faces a problem of insufficient overall resources which could lead to a stoppage of distribution during the peak day.

The main objective of the study is to improve the conditions of drinking water supply in the Mokali quarter, proposing optimization measures and evaluating the drinking water needs by 2049 by ensuring regular availability of this resource so that consumers benefit from it with sufficient pressure at the tap.

Groundwater seems advantageous to us to meet the drinking water needs of the population of the Mokali quarter, because of its low operating cost compared to that of surface water. The exploitation of this water will be done by means of drilling and we will deduce the number [3],[8]. To do this, we first had to gather the necessary data before any distribution of drinking water, among other things: demographic, hydrological and socio-economic data. Consequently, we assessed the water needs of the Mokali quarter to finally deduce the daily water production capacity, year by year until 2049.

Knowing that our country the DRC has abundant underground water resources, we as engineers want to take advantage of this opportunity to find a lasting solution to this thorny problem by means of drilling.

METHODOLOGICAL APPROACH

Presentation of the site

The Mokali quarter is one of the districts of the commune of Kimbanseke. It was created on April 28, 1981 by the decision of the municipal authority whose headquarters of the institution is on avenue YASSA 01 bis. It is a cell of the commune of Kimbanseke, not having been given legal personality. Any act of a criminal nature is immediately referred to the municipality, except in the event of an emergency to the sub-ciat having general jurisdiction in the matter [8].

As illustrated in Figure 1, Mokali sector network is supplied by the DN 350 AJA (Acier Juté Asphalté), connected to the DN 700 coming from the N'djili factory along the boulevard to the N'djili Airport. Furthermore, the network is reinforced by the DN 800 cast iron coming from the N'djili factory. Although the network benefited from the reinforcement of the DN 800 in cast iron, the northern part of the district suffers from a partial and total lack of water linked to insufficient production. The cast iron DN 800 reinforced the DN 350 passing through the streets: Masuekama, Mangele, Nzungu and Dibaya beyond the Mokali bridge. A small part is supplied by a borehole, starting from Ngaliema street, Dispensary and part of Malonda.

Figure 1. Existing network of the Mokali quarter [10]

METHODS

The development of this work leads us to use the following methods:

Documentary method

We collected information from books, various written documents such as articles and posts on Websites. This allowed us to deepen our understanding about the history of the Mokali district, the existing hydraulic network and the description of its various facts.

Data collect and analysis

The interview by contacting some officials of public institutions such as the Kimbanseke communal house, the Mokali quarter office and Regideso for details on the population of the area and the characteristics of the existing drilling. Then, a field visit was carried out identify the machines and devices likely used for this drilling. Once these machines were identified, the operating characteristics were also collected.

Comparative method

It made it easier to examine and compare the evolution of the indicators obtained from one year to the next to extend our study until 2049 and to draw conclusions about the subject of our research based on general considerations.

Drill sizing method

Sizing a borehole is a crucial step in the design of groundwater capture systems. It involved several steps to ensure that the drilling met the needs in terms of flow and water quality while being sustainable and efficient. We understood the geology of the site, the types of rocks present, and the depth of potential aquifers. After assessing water needs, we had determined the number and drilling Parameters such as the operating flow rate (Q_{max}) , the diameter (D) and the depth of the drilling (H). We then made the technical designs while also determining the choice of the electropump group.

Method of sizing the distribution network and storage system (tank)

Knowing the necessary need, we proceeded to determine the volume of the tank and that of the cover. Thanks to EPANET, we designed a complete network by determining the pressure in each section and the pressure losses, planning the locations of all fourteen 14 boreholes in order to allow the population to avoid traveling long distances.

RESULTS AND ANALYSYS

Data collect and evolution of the population

There is a borehole on the Mokali site belonging to Regideso, which serves part of the said quarter. The latter, characterized by insufficient production, does not meet the real needs of the population. It works thanks to a submerged pump powered by a 30 kVa generator, from where the tank is filled by pumping. Its characteristics are shown in table 1 below.

Depth of the tablecloth	105 m
Height of the castle	25 m
Tank capacity	50 m ³
Submersible pump	10 m ³ /h (for 4 hours of operation)

Table 1. Drilling o	characteristics
---------------------	-----------------

Domestic population

Already knowing the growth rate, we can determine the population for the year 2024:

$$P_{2024} = P_{2023} (1 + 0.035)^n \tag{1}$$

For
$$n=1$$
, $P_{2024}=31845(1+0.035)=32960$ residents (2)

The future population is a population which the designer determines for a given period. This period depends on the evaluation of the population and the planned works, the lifespan of the materials to be used. The projection of the future population as part of our study extends over a period of 25 years.

$$P_n = P_0 (1+r)^n \tag{3}$$

for
$$n = 25$$
,
 $P_{2049} = P_{2024} (1 + 0.035)^{25}$
(4)

$$P_{2049} = 77893 \text{ residents}$$
 (5)

Public facilities

By considering an increase of 20%, or 0.20 for all current workforce, we obtain the future workforce, as shown in table 2.

N ⁰	Wording	Current workforce	Future workforce (2049)
1	Schools	4290 students	5148 students
2	Churches	23 assembly	28 assembly
3	Medical centers	114 beds	137 beds
4	Hotels	42 beds	51 beds
5	Administration	26 agents	31 agents
6	Markets	700 m ²	840 m ²

Table 2. Populations in Public Facilities

Evaluation of the specific consumption

We call characteristic consumption (CC) the consumption of all users including the fire reserve. There are two types of water losses including apparent water losses due to the meter and real water losses caused by water leaks and fraudulent connection into the network [23],[29].

Overall, these losses (apparent or real) are estimated at 20% of total consumption [30] and are often high for municipalities with very old or dilapidated distribution networks and leaks. Water losses = CC * 0.20

Thus, we obtain the current characteristic consumptions as shown in table 3.

Nº	Designations	Current population	Current endowment	Current consumption in l/j
1	Domestics	32960	50 l/res/day	1648000
2	Schools	4290	10 l/stud/day	42900
3	Churches	23	100 l/ass/day	2300
4	Medical centers	114	250 l/bed/day	28500
5	Hotels	42	200 l/bed/day	8400
6	Administrations	26	40 l/ag/day	1040
7	Markets	700	5 l/m²/day	3500
8	Fire reserve		2 hours	96
9	Water loss	20%xCC		346947
10	Total		·	2081683

Table 3. Summary of current daily consumption

In the same way, we determine the future characteristic consumptions as shown in table 4.

Nº	Designations	Current population	Current endowment	Current consumption in l/j
1	Domestics	77893	60 l/res/day	4673580
2	Schools	5148	12 l/stud/day	61776
3	Churches	28	120 l/ass/day	3360
4	Medical centers	137	300 l/bed/day	41100
5	Hotels	51	240 l/bed/day	12240
6	Administrations	31	48 l/ag/day	1488
7	Markets	840	6 l/m²/day	5040
8	Fire reserve		2 hours	96
9	Water loss	20%xCC		959736
10	Total		1	5758416

Table 4. Summary of current daily consumption

Flow calculations

For network design, estimating needs requires knowing the average daily flow, the daily peak flow and the hourly point flow. Remember that water consumption is not constant, it varies according to the months of the year, the weeks of the month, the days of the week and the hours of the day. For this reason, it is necessary to design equipment that can adequately satisfy this various maximum as well as minimum consumption [4].

- The current average daily flow will be determined by taking the ratio of the current total daily consumption to the number of seconds in a day
- Goodrich's empirical formula predicts peak consumption of various durations for small residential municipalities. The values of *t* (time in seconds) can vary from 2/24 < t < 366 days:

$$P = 180 t^{-0.10}$$

(6)

which allows us to determine the current peak flow rates as shown in the table 5.

Peak flow	Current average flow in l/s	Coefficient de pointe	Current peak flow in l/s	
Monthly peak flow	24	1.28	30.72	
Weekly peak flow	24	1.48	35.52	
Daily peak flow	24	1.8	43.2	
Hourly peak flow	24	2.3	55.2	
Min peak flow	24	0.5	12	

Table 5. Current peak flow 2024

In the same way, we determine the future peak flow rates as shown in the table 6.

Peak flow	Future average flow in l/s	Coefficient de pointe	Future peak flow in l/s
Monthly peak flow	66.65	1.28	85.31
Weekly peak flow	66.65	1.48	98.64
Daily peak flow	66.65	1.8	119.97
Hourly peak flow	66.65	2.3	153.30
Min peak flow	66.65	0.5	33.325

Table 6. Future peak flow 2049

Moreover,

- maximum flow will be evaluated by the product of the future average flow and the peak coefficient.
- The minimum peak flow is the product of the current average flow by the minority coefficient which varies from 40 to 50% (0.4 to 0.5) often between 3 to 4 a.m. In our project, we consider 0.5 which allows us to determine the current peak flow rates as shown in the table 7.

N^{ullet}	Désignations	Current (2024) l/s	Future (2049) l/s
1	Maximum flow	43.2	119.97
2	Minimum flow	12	33.33

Table 7. Summary of current and future daily flow rates

Source of supply

The waters of the Mokali rivers in the Mokali quarter were not retained because of their low flow; they dry up during the dry season. Groundwater remains the only credible source of supply given the abundance of water in the aquifer through its hydrographic network, its rainfall and its marshland.

Drilling number calculations [3]

The number of drilling is the ratio between the project flow and the operating flow:

$$N = \frac{Q_p}{Q_e} \tag{7}$$

N: number of drillings

 Q_e : operating flow (the flow not to be exceeded in a site)

On our site the operating flow rate does not exceed 30 m³/h according to information obtained from the ONHR in charge of rural hydraulics.

 Q_p : the flow rate of the project.

For our study, our project flow rate was calculated in the previous chapter, which is 119.97 l/s (according table 7).

The number of drillings is calculated as follows:

$$\frac{Q_{max}}{Q_{exp}} = \frac{431.89m^3/h}{30 \ m^3/h} = 14 \ drilling \ wells \tag{8}$$

Distance between two boreholes

The distance between two boreholes is given by:

 $D = 2R \tag{9}$

with:

D = distance between two boreholes,

R = radius of influence

$$Radius = 1000. (H-h) \sqrt{k} \tag{10}$$

K: Permeability coefficient, which depends on the type of soil

The soil type for our study area is sandstone.

 $R = 1000. (30-22) \sqrt{0.0001} = 80 \text{ m}$

Therefore, the distance between two drilling wells will be 160 meters.

Choice of the Pump

For the calculation of the pump and the choice thereof, we find the following elements: the flow rate, the head, the absorbed power, the efficiency possibly and the specific speed [3],[6].

\checkmark	Manometric	Head
--------------	------------	------

$$HMT = Hg + \sum h\Delta h \tag{11}$$

Hg = (Hr-Ha) + drilling depth, with

Hr: discharge height

Ha: suction height

 $Hg=(365-320)+105 \rightarrow Hg=150 \text{ m}$

after calculation and using the Colebrook charts, we have:

$$HMT = 152.608 \text{ m}$$
 (12)

We used the abacus diagram to choose our pump knowing that our head is 152.608 m and the Q_{max} is 119.97 l/s. We can adopt the model Grundfos CR 255-3.

$$\eta_{pump} = \frac{Phyd}{Pmec} \tag{13}$$

with: *ŋ_{pump}*: pump performance

 P_{hyd} : hydraulic power

P_{mec}: mechanic power

Since the motor activates the pump, its efficiency is worth:

$$\eta = \frac{Pm\acute{e}c}{P\acute{e}lec}$$
(14)

For (13):
$$P_{m\acute{e}c} = Pv = \frac{Phyd}{\eta pump} = \frac{\varphi * Q * H * g}{\eta pump} \longrightarrow P_{m\acute{e}c} = \frac{Phyd}{\eta pump}$$
 (15)

 $P_{hyd} = 1000 \text{ kg/m}^3 * 9.81 \text{ m/s}^2 * 153 \text{m} * 0.19997 \text{ m}^3/\text{s} = 180066.57 \text{ Watts}$

Consider, $\eta_{pump} = 0.75$

$$P_{m\acute{e}c} = \frac{180.067}{0.75} \,\mathrm{Kw} \to \mathrm{P_{m\acute{e}c}} = 240 \,\,\mathrm{KW}$$
(16)

The mechanical power is the nominal power shown on the motor nameplate.

Dimensions of the distribution network and storage system (tank)

Conveyance is the transfer of water from the natural source or treatment plant to the distribution reservoir.

In our project, this pipe has the role of transporting the water from the well to the tank and we will call the discharge pipe that which will leave the tank to the storage or distribution tank [31].

The supply to our site will be combined, that is to say from the wells to the tank and from the tank to the storage tank (distribution) by pressure pipe and from the tank to consumers by gravity.

Dimension of the supply pipe

Based on our study we have 14 boreholes of 30 m^3/h as operating flow, on this the total flow which will convey in the water supply pipe is:

$$Q_t = 14 \times 30 = 420 \ m^3/h = \frac{420}{3600} \ m^3/s = 0.117 \ m^3/s$$

Hence:

$$D = \sqrt{Q} = \sqrt{0.117} = 0.342 \ m = 342 \ mm \tag{17}$$

Either:

$$D = 350 \ mm \ (\text{Commercial Diameter})$$
$$V = \frac{4Q}{\pi D^2} = \frac{4(0.117)}{3.14(0.350)^2} = \frac{0.468}{0.38465} = 1.20 \ m/s \tag{18}$$

Actual dimension of the air reservoir and pressure

Knowing that:

L= 900 m; *D* = 0.35 m; *Q*=0.117m³/s; *V*_o=1.2 m/s; *e* =1 cm and H_o =80 m

Which allows us after several calculations to obtain the results shown in the table 8.

Table 8. Dimension of the air reservoir and pressure

N^{ullet}	Désignations	Values
1	reservoir volume	$43.2 m^3$
2	minimum pressure	30.5 m

Dimensions of the Tarpaulin

The Table 9 help use to determine the volume of the Tarpaulin

Table 9. Dimensions of the Tarpaulin

Hours	Incoming Volume in m ³ /h	Cumulative Incoming Volume in m3/h	Ongoing Volume in m ³ /h	Cumulative Ongoing Volume in m ³ /h	Col3 - Col5
0 – 1	431.89	431.89	0	0	431.89
1 - 2	431.89	863.78	0	0	863.78
2-3	431.89	1295.67	518.27	518.27	777.4
3-4	431.89	1727.56	518.27	1036.54	691.02
4-5	431.89	2159.45	518.27	1554.81	604.64

(19)

5-6	431.89	2591.34	518.27	2073.08	518.26
6-7	431.89	3023.23	518.27	2591.35	431.88
7-8	431.89	3455.12	518.27	3109.62	345.5
8-9	431.89	3887.01	518.27	3627.89	259.12
9-10	431.89	4318.9	518.27	4146.16	172.74
10 - 11	431.89	4750.79	518.27	4664.43	86.36
11 - 12	431.89	5182.68	518.27	5182.7	0
12 - 13	431.89	5614.57	518.27	5700.97	-86.4
13 - 14	431.89	6046.46	518.27	6219.24	-174.78
14 - 15	431.89	6478.35	518.27	6737.51	-259.16
15 - 16	431.89	6910.24	518.27	7255.78	-345.54
16 - 17	431.89	7342.13	518.27	7774.05	-431.92
17 - 18	431.89	7774.02	518.27	8292.32	-518.3
18 – 19	431.89	8205.91	518.27	8810.59	-604.68
19 - 20	431.89	8637.8	518.27	9328.86	-691.06
20 - 21	431.89	9069.69	518.27	9847.13	-777.44
21 - 22	431.89	9501.58	518.27	10365.4	-863.82
22 - 23	431.89	9933.47	0	10365.4	-431.93
23 - 24	431.89	10365.36	0	10365.4	0

 \checkmark It appears that the concentration or pumping time = 20 hours

✓ Tarpaulin volume = largest positive value + largest negative value Tarpaulin volume = $863.78+863.82 = 1728 \text{ m}^3$

Dimension of the reservoir

To do this, we adapt the consumption curve method. The calculations allow us to arrive at the following table 10.

Hours	Production	Hourly peak coefficient	Volume of water consumed	Remaining water volume	Cumulative water volume
	А	В	C= A x B	D=A-C	
0-1	431.89	0.3	129.57	302.32	302.32
1-2	431.89	0.3	129.57	302.32	604.64
2-3	431.89	0.3	129.57	302.32	906.97
3-4	431.89	0.3	129.57	302.32	1209.29
4-5	431.89	0.3	129.57	302.32	1511.61
5-6	431.89	1.8	777.40	-345.51	1166.10
6-7	431.89	1.8	777.40	-345.51	820.59

Table 10. Value for tank sizing

7-8	431.89	1.5	647.84	-215.95	604.64
8-9	431.89	1.5	647.84	-215.95	388.70
10-11	431.89	1.5	647.84	-215.95	172.75
11-12	431.89	1.5	647.84	-215.95	-43.19
12-13	431.89	1.2	518.27	-86.38	-129.57
13-14	431.89	1.2	518.27	-86.38	-215.95
14-15	431.89	1	431.89	0.00	-215.95
15-16	431.89	1	431.89	0.00	-215.95
16-17	431.89	1.4	604.65	-172.76	-388.70
17-18	431.89	1.4	604.65	-172.76	-561.46
18-19	431.89	1.4	604.65	-172.76	-734.22
19-20	431.89	0.9	388.70	43.19	-691.03
20-21	431.89	0.9	388.70	43.19	-647.84
21-22	431.89	0.9	388.70	43.19	-604.65
22-23	431.89	0.7	302.32	129.57	-475.08
23-24	431.89	0.6	259.13	172.76	-302.33

Thus,

Cumulative water volume = $1166.10 + 734.22 = 1900 \text{ m}^3$ (20)

Since our volume is greater than 1000 m³, we opt for 5 m of water height.

So,
$$V = S \times h \Rightarrow S = \frac{V}{h} \Leftrightarrow \frac{1900}{5} = 380 \text{ m}^2$$

And, the diameter, $D = \sqrt{4 \times 380/3.14} = 22 \text{ m}$
Tank height $= H_e + H_r + H_m$
With H_e : water height in m, i.e. 5 m
 H_r : height of the air draft, i.e. 10% of the water height

 H_m : maintenance height, i.e. 0.25m

Tank Volume = Surface x Tank height = $380 \times 5.75 = 2185 \text{ m}^3$ (21)

Finally, the volume of the tank is 2185 m³.

Distribution system

In the case of the Mokali quarter, we adopted a system with pumping and storage then distribution by gravity to the extent that the topography of the land offers interesting differences in level. For the drinking water distribution network, we dimension three (3) important parameters which are as follows: Flow rates, Speeds and Pressures. The Table 7 shows the values of speed, rate of flow and load losses in each section

N• Section		Length	Rate of f	low	Dmin	Dmin Dmax	DN	V	Load losses
		<i>(m)</i>	Q (l/s)	Q (m ³ /s)	(<i>mm</i>)	(<i>mm</i>)	(<i>mm</i>)	(<i>m</i> /s)	$\Delta H(m)$
1	R-1	30	153.3	0.15330	360.8	625.0	400	1.221	0.0877
2	12	96	17.52	0.01752	122.0	211.3	125	1.428	1.5813
3	2BF1	5	4.38	0.00438	61.0	105.6	80	0.872	0.0506
4	23	144	13.14	0.01314	105.6	183.0	125	1.071	1.3342
5	3BF2	7	4.38	0.00438	61.0	105.6	80	0.872	0.0708
6	34	180	8.76	0.00876	86.3	149.4	100	1.116	2.2621
7	4BF3	6	4.38	0.00438	61.0	105.6	80	0.872	0.0607
8	45	168	4.38	0.00438	61.0	105.6	80	0.872	1.7003
9	5BF4	7	4.38	0.00438	61.0	105.6	80	0.872	0.0671
10	16	72	21.9	0.02190	136.4	236.2	150	1.240	0.7033
11	6BF5	6	4.38	0.00438	61.0	105.6	80	0.872	0.0607
12	67	120	17.52	0.01752	122.0	211.3	150	0.992	0.7502
13	7BF6	5	4.38	0.00438	61.0	105.6	80	0.872	0.0506
14	78	102	13.14	0.01314	105.6	183.0	125	1.071	0.9451
15	8BF7	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
16	89	126	8.76	0.00876	86.3	149.4	100	1.116	1.5835
17	910	156	4.38	0.00438	61.0	105.6	80	0.872	1.5788
18	10BF8	9	4.38	0.00438	61.0	105.6	80	0.872	0.0911
19	911	78	4.38	0.00438	61.0	105.6	80	0.872	0.7894
20	11BF9	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
21	112	216	113.88	0.11388	311.0	538.6	350	1.184	0.7279
22	1213	60	35.04	0.03504	172.5	298.8	200	1.116	3.3512
23	13BF10	7	4.38	0.00438	61.0	105.6	80	0.872	0.0708
24	1314	102	30.66	0.03066	161.4	279.5	200	0.976	4.3618
25	14BF11	9	4.38	0.00438	61.0	105.6	80	0.872	0.0911
26	1415	108	26.28	0.02628	149.4	258.8	150	1.488	1.5192
27	15BF12	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
28	1516	90	21.9	0.02190	136.4	236.2	150	1.240	0.8792
29	16BF13	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
30	1617	96	17.52	0.01752	122.0	211.3	150	0.992	0.6002
31	17BF14	7	4.38	0.00438	61.0	105.6	80	0.872	0.0708
32	1718	96	13.14	0.01314	105.6	183.0	125	1.071	0.8895
33	18BF15	9	4.38	0.00438	61.0	105.6	80	0.872	0.0911

Table 11. Pipe characteristics

34	1819	90	8.76	0.00876	86.3	149.4	100	1.116	1.1310
35	19BF16	6	4.38	0.00438	61.0	105.6	80	0.872	0.0607
36	1920	186	4.38	0.00438	61.0	105.6	80	0.872	1.8824
37	20BF17	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
38	1221	312	78.84	0.07884	258.8	448.2	300	1.116	1.0891
39	2122	60	39.42	0.03942	183.0	316.9	200	1.255	4.2414
40	22BF18	9	4.38	0.00438	61.0	105.6	80	0.872	0.0911
41	2223	150	35.04	0.03504	172.5	298.8	200	1.116	8.3781
42	23BF19	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
43	2324	150	30.66	0.03066	161.4	279.5	200	0.976	6.4145
44	24BF20	7	4.38	0.00438	61.0	105.6	80	0.872	0.0708
45	2425	132	26.28	0.02628	149.4	258.8	150	1.488	1.8568
46	25BF21	9	4.38	0.00438	61.0	105.6	80	0.872	0.0911
47	2526	126	21.9	0.02190	136.4	236.2	150	1.240	1.2309
48	26BF22	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
49	2627	96	17.52	0.01752	122.0	211.3	125	1.428	1.5813
50	27BF23	7	4.38	0.00438	61.0	105.6	80	0.872	0.0708
51	2728	138	13.14	0.01314	105.6	183.0	125	1.071	1.2786
52	28BF24	6	4.38	0.00438	61.0	105.6	80	0.872	0.0607
53	2829	192	8.76	0.00876	86.3	149.4	100	1.116	2.4129
54	29BF25	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
55	2930	90	4.38	0.00438	61.0	105.6	80	0.872	0.9109
56	30BF26	6	4.38	0.00438	61.0	105.6	80	0.872	0.0607
57	2131	246	39.42	0.03942	183.0	316.9	200	1.255	17.3897
58	3141	138	4.38	0.00438	61.0	105.6	80	0.872	1.3966
59	41BF27	6	4.38	0.00438	61.0	105.6	80	0.872	0.0607
60	3132	48	35.04	0.03504	172.5	298.8	200	1.116	2.6810
61	32BF28	5	4.38	0.00438	61.0	105.6	80	0.872	0.0506
62	3233	150	30.66	0.03066	161.4	279.5	200	0.976	6.4145
63	33BF29	7	4.38	0.00438	61.0	105.6	80	0.872	0.0708
64	3334	204	26.28	0.02628	149.4	258.8	150	1.488	2.8696
65	3435	180	4.38	0.00438	61.0	105.6	80	0.872	1.8217
66	35BF30	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
67	3436	48	21.9	0.02190	136.4	236.2	150	1.240	0.4689
68	36BF31	6	4.38	0.00438	61.0	105.6	80	0.872	0.0607
69	3637	108	17.52	0.01752	122.0	211.3	125	1.428	1.7790

70	37BF32	8	4.38	0.00438	61.0	105.6	80	0.872	0.0810
71	3738	96	13.14	0.01314	105.6	183.0	125	1.071	0.8895
72	38BF33	9	4.38	0.00438	61.0	105.6	80	0.872	0.0911
73	3839	174	8.76	0.00876	86.3	149.4	100	1.116	2.1867
74	39BF34	7	4.38	0.00438	61.0	105.6	80	0.872	0.0708
75	3940	324	4.38	0.00438	61.0	105.6	80	0.872	3.2791
76	40BF35	10	4.38	0.00438	61.0	105.6	80	0.872	0.1012

It appears from this table that the total length of the pipes is 16986 m. There are 35 standpipes allowing water to be distributed comfortably for use and ensuring good hygiene of distribution with a flow rate of 4.38l/s. For each fountain, we have two types of faucets: 5 faucets of $\frac{1}{2}$ inch and 1 faucet of $\frac{3}{4}$ inch. Moreover, the Table 12 shows the values of hydraulic pressures and loads.

N^{ullet}	Knots	Altitudes (m)	Pressures (m)	Pressures (bar)	Hydraulic Loads (m)
1	1	359	6.91	0.7	365.91
2	2	345	19.27	1.9	364.27
3	3	334	28.85	2.8	362.85
4	BF1	349	15.21	1.5	364.21
5	BF2	341	21.27	2.1	362.27
6	4	335	25.32	2.5	360.32
7	BF3	337	23.25	2.3	360.25
8	5	323	35.37	3.4	358.37
9	BF4	320	38.29	3.7	358.29
10	6	354	11.16	1.1	365.16
11	7	340	24.35	2.4	364.35
12	8	328	35.34	3.4	363.34
13	9	326	35.57	3.4	361.57
14	10	324	35.76	3.5	359.76
15	11	325	35.67	3.5	360.67
16	BF5	355	10.09	1.0	365.09
17	BF6	339	25.29	2.4	364.29
18	BF7	327	36.25	3.5	363.25
19	BF8	322	37.66	3.6	359.66
20	BF9	325	35.58	3.4	360.58
21	12	360	5.18	0.5	365.18
22	13	355	9.82	1.0	364.82
23	BF10	354	10.74	1.0	364.74

Table 12. Values of hydraulic pressures and loads.

24	14	347	17.35	1.7	364.35
25	BF11	346	18.25	1.8	364.25
26	15	340	22.76	2.2	362.76
27	BF12	341	21.67	2.1	362.67
28	16	334	27.83	2.7	361.83
29	BF13	335	26.73	2.6	361.73
30	17	329	32.18	3.1	361.18
31	BF14	328	33.09	3.2	361.09
32	18	326	34.23	3.3	360.23
33	BF15	326	34.13	3.3	360.13
34	19	325	33.97	3.3	358.97
35	BF16	325	33.9	3.3	358.9
36	20	323	33.81	3.3	356.81
37	BF17	322	34.71	3.4	356.71
38	21	350	14.05	1.4	364.05
39	22	349	14.6	1.4	363.6
40	BF18	350	13.5	1.3	363.5
41	23	346	16.17	1.6	362.17
42	BF19	346	16.62	1.6	362.62
43	24	336	26.02	2.5	362.02
44	BF20	335	26.94	2.6	361.94
45	25	330	30.07	2.9	360.07
46	BF21	329	30.97	3.0	359.97
47	26	327	31.76	3.1	358.76
48	BF22	327	31.67	3.1	358.67
49	27	324	33.12	3.2	357.12
50	BF23	324	33.04	3.2	357.04
51	28	319	36.76	3.6	355.76
52	BF24	319	36.69	3.6	355.69
53	29	318	35.07	3.4	353.07
54	BF25	320	32.97	3.2	352.97
55	31	345	17.21	1.7	362.21
56	41	335	26.61	2.6	361.61
57	BF27	332	28.54	2.8	360.54
58	32	340	21.93	2.1	361.93
59	BF29	341	20.87	2.0	361.87
60	33	338	23.24	2.2	361.24
61	BF29	339	22.16	2.1	361.16
62	34	334	24.23	2.3	358.23
63	35	325	31.14	3.0	356.14

64	30	325	31.05	3.0	356.05
65	36	331	26.73	2.6	357.73
66	BF31	331	26.66	2.6	357.66
67	37	327	28.89	2.8	355.89
68	BF32	325	30.79	3.0	355.79
69	38	323	31.94	3.1	354.94
70	BF33	321	33.84	3.3	354.84
71	39	321	31.5	3.0	352.5
72	BF34	321	31.42	3.0	352.42
73	40	319	29.73	2.9	348.73
74	BF35	320	28.62	2.8	348.62
75	30	317	35.02	3.4	352.02
76	BF26	315	36.95	3.6	351.95

Network simulation using Epanet software

EPANET is software developed for simulating the behavior of water distribution systems from a hydraulic point of view and also from a water quality point of view. The network simulation result give us the presentation of the network, the characteristic curve of the pump and the longitudinal profile respectively as illustrated in the figures 2, 3 and 4. We see that there are 35 standpipes allowing water to be distributed comfortably for use and ensuring good hygiene of distribution.

Figure 2. Presentation of the hydraulic network

D Courbe		Desc	ription				
1	1	Cou	rbe Car	actéristique (de la pompe	ų.	
lype de Co	urbe	Équa	ation				
CARACTÉ	RISTIQUE 💌	Hau	uteur = 2	204,00 -0,00	3544 (Débit)^2,00	
Débit	Hauteur	^		200			1
119,97	153	-		200			
			Ē	150			
			auteu	100-			
		7.3	Ĩ	50-			
		- 10					
[~		Ó	50	100 150 Débit (LPS)	0 200

Figure 3. Pump characteristic curve

This curve is because at low flow rates the pump can generate higher pressure, but at higher flow rates the pressure decreases because the pump must move a greater volume of fluid.

Figure 4. Longitudinal profile of the system

This altitude profile shows the variation in land elevation between the points where drilling is planned. These values are between 317 and 365 meters. graphic allows us to observe the slopes, high points, valleys, and plateaus along the route and to optimize our system in the case of future studies.

Investment estimate

Num.	Désignations	Ute	Qty	U.P(€)	T.P(€)
1	Installation of the construction site				
1,1	Installation and withdrawal of the site	FF	14	2500	35000
1,2	Technician Services	Person.	12		
	Subtotal 1				35000
2	Supply and Consumables				
2,1	Protection tube in steel or PVC DN 350 mm	М	560	180	100800
2,2	Blind Threaded PVC Pipe DN 140 PN 16 (L=3 m)	Pce	434	130	56420
2,3	Threaded PVC Strainer Pipe DN 140 PN 16 (L=3m)	Pce	196	140	27440
2,4	Threaded PVC Bottom Plug DN 140PN 16	Pce	28	50	1400
2,5	Filter Mass (Particle size 1.4 - 2.4mm)	Т	140	350	49000
2,6	Slurry Product (Polymer)	Bag	56	350	19600
2,7	Mud Product (Be tonic)	Bag	28	50	1400
2,8	Original nylon rope Ø 20 mm	Roll	28	140	3920
2,9	Gray cement	Bag	70	10	700
2,10	Diesel	L	14,7	1000	14700
2,11	Sae 50	L	350	4	1400
2,12	Sae 90	L	840	5	4200
2,13	Red Hydraulic Hydra 62	L	1400	3,5	4900
2,14	Fat	Kg	280	5	1400
	Subtotal 2				287280
3	Acquisition of Materials				
3,1	Provision of the sounder	FF			
3,2	Provision of the Compressor	FF			
3,3	Provision of a water tank	FF			
3,4	Air lift injection	Hour	336		
3,4.1	Diesel	L	2800	1,05	2940
3,4.2	PVC tube DN 1" 1/2 + Accessory	Roll	28		
	Subtotal 3				2940
4	Water Quality Analysis	U	42	300	12600

Table 13 shows us the financial estimate for carrying out this study

4,1	Drill head construction	U	14	500	7000
4,2	Electro-Mechanical Equipment/pump and accessories (Q=5 m3/h; Hm=150 m and P= 3 HP)	Kit	14	3000	42000
	Subtotal 4				61600
5	Super metal structure				
5,1	Metal Tower 10 meters high	U	14	7000	98000
5,2	Supply and installation of 20 m3 tank	U	14	14000	196000
5,3	Distribution network of 2800 meters with 8 fountain terminals				
	Subtotal 5				294000
	GENERAL TOTAL (EUR)				680820

The total cost of carrying out this project is $680\ 820 \in$. If such a budget is granted to us, we are sure that it will benefit this population.

CONCLUSIONS

The objective of this work is to provide the population of the Mokali quarter with drinking water of sufficient quality and quantity, both in the present and in the future by 2049.

Indeed, after analyzing the existing situation of the site, we noted that the latter has a problem with sufficient water production. As a result, we carried out a very in-depth demographic study of the said neighborhood, which revealed the evolution of the population and the latter made it possible to estimate the need for drinking water and by calculating the flow in twenty-five (25) years.

In doing so, we propose supplying this quarter by capturing groundwater. Everyone is aware that groundwater is known to be of good quality and certification of this quality before distribution will be ensured by an approved laboratory. Pumping from these boreholes to the elevated reservoir will be carried out by motor pump units operated by electrical energy.

Then, based on these data, we proposed fourteen (14) boreholes of 120 m each and whose operating flow rate of each is 30 m³/h, suitable for our project flow rate, estimated at 119.97 l/s or 431.89 m³/h which will be installed in well-studied points of the site; then dimensioned a reservoir of 2185 m³ volume, which supplies the city all day long. We then carried out a hydraulic calculation of the drinking water distribution network after evaluating the flow rates for each section.

This scientific work, which could still be the subject of more in-depth studies, constitutes our contribution to overcoming the problem of water shortage in our study site, the Mokali district with a view to ensuring good socio-sanitary development of the area but also a source of revenue for the state after invoicing for the service

REFERENCES

- [1] World Health Organization. Guidelines for Drinking-water Quality (4th ed.). Geneva: WHO Press. 2011
- [2] United Nations. Water for Sustainable Development 2018–2028: Report of the Secretary-General. United Nations. 2018
- [3] Kacimi I. Cours d'Hydrologie et Hydrogéologie. Laboratoire de Geosciences, Eau et Environnement. CRASTE-LF, Université Mohammed V de Rabat. Maroc, 2021
- [4] Mukeba Yakasham L.K. Chaudieres Conception, Fabrication, Installation, Exploitation et controle. Editions Mikanda, 2021
- [5] GWP (Global Water Partnership). Integrated Water Resources Management. Technical Advisory Committee, Background Paper No. 4. 2000
- [6] Ngimbi R.M. Cours d'Electromecanique, Universite de Kinhasa. Kinshasa. DR Congo, 2021
- [7] Kebede S. Groundwater in Ethiopia: Features, Numbers and Opportunities. Springer. 2013
- [8] Howard, G., Bartram, J., Domestic Water Quantity, Service Level and Health. World Health Organization, Geneva. 2003
- [9] Foster, S., Chilton, J., Groundwater: The Processes and Global Significance of Aquifer Degradation. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1440), 1957–1972. 2003
- [10] Smith, J., Doe, A., Assessment of the Existing Water Supply Network in the Mokali Quarter, Kimbanseke Township. Department of Water Resources, University of Kinshasa. 2023
- [11] DWA (Department of Water Affairs). (National Water Resource Strategy. 2nd Edition. Pretoria: Department of Water Affairs. 2013
- [12] Bonsor, H., et al., Africa Groundwater Atlas: Hydrogeology of Democratic Republic of the Congo. British Geological Survey. 2017.
- [13] Kandiah, A., Heijnen, H., Small Community Water Supplies: Technology of Small Water Supply Systems in Developing Countries. International Reference Centre for Community Water Supply and Sanitation, WHO. 1992
- [14] SADC (Southern African Development Community). Regional Water Policy. SADC, Gaborone, Botswana. 2011.
- [15] Mukherji, A., Shah, T., Groundwater Socio-ecology and Governance: A Review of Institutions and Policies in Selected Countries. Hydrogeology Journal, 13(1), 328-345. 2005.
- [16] FAO (Food and Agriculture Organization). AQUASTAT: Global Information System on Water and Agriculture. FAO, Rome. 2016.
- [17] Mehta, M., Groundwater Governance in Africa: Realizing the Potential of Africa's Groundwater Resources. World Bank. 2004.

- [18]BGR (Federal Institute for Geosciences and Natural Resources). Groundwater Resources in the Global Climate Change Context. BGR, Germany. 2012.
- [19] UNESCO. World Water Development Report 2014: Water and Energy. United Nations Educational, Scientific and Cultural Organization. 2014.
- [20] MacDonald, A.M., et al., Quantitative Maps of Groundwater Resources in Africa. Environmental Research Letters, 7(2), 024009. 2012.
- [21] Brikke, F., Bredero, M., Linking Technology Choice with Operation and Maintenance in the Context of Community Water Supply and Sanitation. WHO and IRC Water and Sanitation Centre. 2003.
- [22] Seibert, S., Visser, J., Groundwater Development and Utilization in Sub-Saharan Africa: An Overview. Water Alternatives, 11(3), 709-727. 2018.
- [23] UNICEF. Water, Sanitation and Hygiene: Annual Report 2012. UNICEF, New York. 2012.
- [24] Davies, J., Day, J., Vanishing Waters. Cape Town: University of Cape Town Press. 1998.
- [25] Ostrom, E., Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press. 1990.
- [26] Taylor, R.G., et al., Ground Water and Climate Change. Nature Climate Change, 3(4), 322-329. 2013.
- [27] Omer, A.M., Energy, Environment and Sustainable Development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. 2008.
- [28] MacDonald, A.M., Calow, R.C., Developing Groundwater for Secure Rural Water Supplies in Africa. Desalination, 248(1), 546-556. 2009.
- [29] Tindimugaya, C., Groundwater Management in Africa. African Groundwater Network (AGW-Net) Report. 2014.
- [30] Farley, M., Trow, S., Losses in Water Distribution Networks: A Practitioner's Guide to Assessment, Monitoring, and Control. IWA Publishing, 2003

Received: September 2024; Revised: January 2025; Accepted: February 2025; Published: February 2025