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ABSTRACT 

Assessing the risk associated with drilling and wellbore stability studies requires the shear 

sonic log. These logs apart from distinguishing formation fluid from lithology are needed 

to obtain geo-mechanical rock parameters required for the safe design of rock fracturing. 

Although sonic logs are of great importance, they are usually not obtained due to the 

limiting cost of acquisition. Neural networks have been used to generate these logs to 

save cost, but these networks are prone to overfitting. The dropout rate has been proposed 

to tackle this problem, however selecting the optimum dropout probability rate can be 

challenging manually or expensive computation wise.  

This research therefore investigated concrete dropout, a dynamic technique for adapting 

the dropout rate of a neural network to the data. The concrete dropout technique was 

applied to an artificial neural network (ANN) and a convolutional neural network (CNN) 

model to predict the shear sonic log with Monte Carlo simulation. Comparison was also 

made with the deterministic ANN and CNN models which had no dropout layers added 

and a Bayesian-optimized multilayer perceptron (MLP) model. These models were 

trained and validated with four (4) wells from the Volve field, using features with the 

highest correlation. The Concrete dropout ANN was found to outperform both the 

deterministic versions and the MLP model with R2, RMSE, MSE and MAE scores of 

0.9548, 3.6415, 2.4433 and 0.0179 respectively.  

The neural networks built in this study showed an enhanced predictive performance with 

concrete dropout addition over the networks with no dropout added, showing that the 

technique was able to adapt the dropout rate to fit the nature of data and improve 

performance, which finds great application in real time deployment. The findings of this 

study also proposed a cost-effective way of sampling and averaging multiple outputs from 

a single neural network model, leading to enhanced predictive performance as the 

addition of concrete dropout allowed the network output distributions rather than point 

predictions. 
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INTRODUCTION 

Sonic logs are geophysical logs that measure the transit time of sound propagating in a 

porous medium. They contain compressional and shear sonic logs which can be used to 

obtain geo-mechanical rock parameters which are indispensable to studies of well 

characteristics such as wellbore stability, fracturing design, surface seismic data 

calibration and others [14], [3].  Shear wave velocity can be used to calculate the dynamic 

modulus of the formation as well as other petro-physical properties [24]. It also allows us 

to discriminate the formation fluids from the rock formation [32]. Their availability is 

essential, as it allows for the estimation of formation parameters that are critical to 

assessing and quantifying the risk associated with drilling and wellbore stability [3].  

Although these logs are of great importance, they are usually not obtained for old wells 

due to their high cost of acquisition [2] and some of those obtained have missing sections. 

Different approaches have been proposed to address this problem. The early approach to 

shear sonic log prediction relied heavily on empirical correlation and mathematical 

models [2]. One of the earliest correlations was by Faust [15]. He introduced a simple 

relationship to estimate the compressional wave velocity from resistivity and depth in his 

work. [18] also estimated the compressional wave velocity from density. The more 

popular Greenberg & Castagna correlation [20] produced a relationship between 

compressional porosity, saturation, lithology and shear wave and its prediction method is 

constrained to porous, brine-saturated reservoirs or zones [4]. Although these models 

show promising results and are simple to implement, they can only be applied to a specific 
geological setting or rock type. The limitations of these simple correlations in capturing 

the complex, non-linear relationship that exists between the subsurface formation 

properties, the need for unexplainable constants and their need for assumption which can 

alter the reservoir properties, have led to the development of more advanced techniques 

and the adoption of data-driven models to generate synthetic responses in light of the 

advances in deep learning and artificial intelligence [2]. 

New methods of predicting sonic logs are to be embraced because of the high acquisition 

cost of these logs and the increasing difficulty of securing funding for hydrocarbon 

projects due to the energy transition. Various studies have implemented diverse machine-

learning models to predict reservoir properties using wells [29],[30]. Artificial neural 

networks (ANN) can be a useful tool to aid the prediction and analysis of existing and 

emerging areas in the oil and gas industry and also in geophysical tasks like sonic log 

[30].  

An artificial neural network (ANN) is a machine-learning model whose design was 

inspired by the network of biological neurons in the human brain [4]. These networks are 

powerful computational models capable of learning the intricate and complex patterns 

within data. However, over-fitting is a persistent problem of neural networks. The 

introduction of dropout [22], [35] has to a great extent addressed this significant challenge 

of over-fitting in deep learning techniques. Since then, it has also been widely adopted in 

Convolutional Neural Network (CNN) models [12]. The question arising then is, how 

does one choose the optimum dropout rate to be applied to each layer of the network ? 

This has traditionally been done in the following works using neural networks for shear 

sonic log prediction ([1-6], [19], [23], [27-28], [31], [33], [39]) through manual 

experimentation which is tedious or through automatic tuning which can be 

computationally expensive. In the aforementioned works, an attempt was not made to 
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investigate the concrete dropout technique in order to select the optimum neural network 

dropout rate as a function of the data. Therefore, the main contribution of this work is to 

demonstrate the application of a concrete dropout one-dimensional Convolutional Neural 

Network (1D-CNN) and ANN models with Monte-Carlo simulation to predict the shear 

sonic log. A comparison is also made with both their deterministic architectures which 

had no dropout added and a Bayesian optimized multilayer perceptron (MLP). 

 

CONCRETE DROPOUT  

Standard deterministic deep neural networks operate on a one-input-one-output basis. 

Unlike single-point predictions of such models, Bayesian methods such as Bayesian 

Neural Networks (BNNs) and Gaussian process (GPs) give predictive distributions [11]. 

Bayesian neural networks rather than outputting a single fixed value, output a probability 

distribution (a prior) over the neural network weights. These network weights each have 

a mean and variance associated with them as they are no longer point values but 

distributions for which these properties can be found. The model prediction is then 

achieved by integrating the entire set of possible weights and at training, updating the 

prior to posterior. The prohibitive computation cost of Bayesian inference has resulted in 

other methods of training neural networks with low computational cost implications [26]. 

One such method is the Monte Carlo dropout technique by [16]. The authors showed that 

a neural network trained with dropout [22], [35], active during both training and at test 

time could approximate a Bayesian inference [26]. Therefore, with each forward pass 
through the network, a new set of predictions could be obtained for which the mean 

prediction can be computed [10]. An additional benefit is that the architecture of the 

network remains largely unchanged in the approach [16].  

One of the criticisms of the Monte Carlo technique is that the dropout rate and weight 

regularization which affect the model output requires a grid search to be implemented in 

other to obtain optimum dropout rate which can be computationally expensive [17]. In 

the Monte Carlo dropout technique, discrete Bernoulli distributions which are 

parameterized by a dropout rate are randomly drawn following a Bernoulli distribution 

and in a subsequent work by [17], the authors proposed an extension to the Monte Carlo 

technique by imposing a continuous relaxation to this distribution, known as the concrete 

distribution relaxation, thus creating a variant where the dropout rate of each layer is 

learned as part of the optimization process, therefore, eliminating the need to grid search 

over the dropout probabilities. This method allows for dropout probabilities to be tuned 

thus allowing the model to dynamically adapt to the data.  

Concrete dropout allows the dropout probability to adapt as more data is collected, instead 

of being set once and held fixed [17]. The trained model is essentially an infinite ensemble 

of neural networks where each instance has its weights drawn from the posterior 

distribution [26]. Sampling the predictions from many trained similar networks has been 

noted to show enhanced performance, and robustness as well as reduce the uncertainty of 

deep learning model [25], as it reduces the disadvantages of using only a single network 

for inference thus improving the model's predictive performance [21]. 
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MATERIALS AND METHODS 

DATASET 

The data used in this paper comes from the publicly available Volve field. The field is 

located in block 15/9 of the Norwegian North Sea and lies 200km west of Stavanger, 

being bounded to the east by the Loke gas field [6]. Production on the field started from 

2008 and ended in 2016 when it was decommissioned with its datasets open-sourced in 

2018 by [13]. This paper used four wells containing both shear and compressional sonic 

logs, namely, wells 15/9-F1B, 15/9-F1A, 15/9-F11, and 15/9-F11T2.  

 
Figure 1. Location map of Volve field [38] 

 

PREPROCESSING 

Domain knowledge and Statistical analysis using Pearson correlation coefficient and 

scatter plots were used to reduce the dataset to the features which had the highest 

correlation with the shear sonic log (DTS). They include: gamma ray (GR), bulk density 

(RHOB), photoelectric log (PEF), resistivity log (RT), neutron porosity (NPHI), and 

compressional sonic log (DT). The correlation of these features with the predictor can be 

seen in Figure 2.  

 
Figure 2. Pearson Correlation Coefficient Matrix 
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Logarithmic transformation enhances a model's prediction [2]. Therefore, the resistivity 

log was log-transformed and rows with missing data were dropped. The box plot was 

used to identify outlier points in the chosen features and Isolation Forest [36], an 

unsupervised machine learning model for outlier detection was used to identify these 

outliers and they were removed separately from each of the four wells. Data from three 

of the cleaned wells F1B, F11, and F11T2 were then merged into a single dataset for 

model training and dataset from well F1A was reserved as the blind validation dataset for 

final model evaluation. All models built in this paper were trained with 90% of the data 

(17,359 rows) and 10% (1,929 rows) for testing. Blind validation was done on well F1A 

(Table 2) with 8171 data points. The summary statistics for both training and blind 

validation datasets are found in Table 1 and Table 2. The summary statistics show that 

the data values for blind validation of the built models lies within the range of the values 

of the training data which allows the neural networks to be able to perform well.  

 

Table 1. Training Data Summary Statistics 

  DEPTH GR NPHI RHOB PEF RT DT DTS 

count 19288 19288 19288 19288 19288 19288 19288 19288 

mean 3162.63 27.369 0.136 2.505 7.176 0.432 73.383 132.634 

std 267.882 21.357 0.056 0.119 1.119 0.358 9.730 18.748 

min 2625.8 0.852 0.032 2.133 4.511 -0.629 55.75 95.477 

25% 2948.5 8.873 0.093 2.486 6.322 0.2835 66.509 120.252 

50% 3164.2 24.938 0.128 2.546 7.593 0.481 71.467 129.739 

75% 3356.4 41.157 0.170 2.583 8.0370 0.664 78.067 138.819 

max 3721.6 126.895 0.323 2.737 9.965 1.394 107.99 261.496 

 

Table 2. Blind Validation Data Summary Statistics 

  DEPTH GR NPHI RHOB PEF RT DT DTS 

count 8171 8171 8171 8171 8171 8171 8171 8171 

mean 3115.60 29.690 0.136 2.51 6.942 0.403 72.950 133.135 

std 277.454 22.303 0.056 0.1188 1.036 0.373 8.894 17.715 

min 2632.1 1.041 0.032 2.1608 4.511 -0.529 57.911 103.724 

25% 2889.45 9.662 0.095 2.4898 6.259 0.248 67.094 120.925 

50% 3098.3 29.466 0.129 2.5511 7.400 0.475 71.81 130.813 

75% 3303.85 42.891 0.169 2.586 7.739 0.631 76.424 138.232 

max 3641.8 126.895 0.323 2.737 9.965 1.2150 103.657 193.475 

 

The dataset was not smoothed as this likely changes the nature of the data and is not 

recommended as described by [9]. Feature Scaling allows the machine learning algorithm 

not to be biased to the magnitude of the different data features in the dataset. Scaling of 

inputs can affect the gradients in deep learning by preventing the activation function from 

flattening towards 1 since this would make the gradient descent method ineffective [7], 

[39].  
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In this paper, experimentation with standardization produced better learning than 

normalization scaling which produced poor performance. This suggests that 

standardization better suits the well log data used in this study. Well log data is a 

sequential type of data. Therefore, this work followed the methodology of data splitting 

proposed by [37]. They demonstrated that the conventional methodology of shuffling and 

taking random samples of sequential geologic data to create a train-test dataset is flawed 

and it can produce unrealistically good results. This idea is also embraced here as having 

a model train on previous sections of a well log and predicting the next section has great 

application in real-time deployment. 

 

MODEL ARCHITECTURE SECTION 

The structure and hyper-parameters of the 1D-CNN and ANN models are presented in 

Table 3. The hyper-parameters of both the CNN and ANN models in Table 3 were 

determined using manual experimentation and those of the MLP model were obtained 

using Bayesian hyper-parameter optimization using hyper-opt.  

 

          Table 3. Model architecture and hyper-parameters 

Model Hyper-parameter Value 

CNN convolution layers: 3 

 filter sizer per layer: 128/64/32 

 kernel size per layer: 3/2/2 

 activation per layer: relu/leakyReLU/LeakyReLU 

 Pooling layers: Global average pooling 

 dense layers neurons: 1 (20 neurons) 

 optimizer: Adam 

 learning rate: 0.001 

 loss: mse 

 metric: mae 

 epochs (concrete dropout): 28 

 epochs (deterministic): 27 

ANN hidden layers: 3 

 output layers: 1 

 neurons per hidden layer: 30/60/30 

 learning rate: 0.001 

 optimizer:  Adam 

 activation function: LeakyReLU 

 loss: mse 

 metric: mae 

 epochs (concrete dropout): 99 

 epochs (deterministic): 16 
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MLP alpha: 8.527 

 hidden_layer_sizes: 2 

 learning_rate_init: 1.973 

 max_iter: 500 

 Shuffle: False 

 Solver: lbfgs 

 

CONCRETE DROPOUT CNN  

The CNN’s architecture includes three (3) convolution layers. The first layer used a relu 

activation function while the two other layers had leakyReLU as activation function. The 

values from the convolution layers are passed to a single dense layer of 20 neurons. The 

hyper-parameters for this network were selected through an experimental process. The 

model used the Adam optimizer, with a learning rate of 0.001 mean absolute error (MAE) 

as the metric and mean squared error (MSE) as the loss function. MAE was chosen as it 

has the same unit as the target feature. The concrete dropout network has the length scale 

(l) and model precision (𝜏) as model parameters. The length scale values of the concrete 

dropout architecture imply that setting length scale l can show our belief or a priori 

assumption over function frequency characteristics of the data with small length-scale 

value meaning function output can change fairly rapidly, while large length-scale 

indicating function values changing slowly [34]. Also, the concrete dropout is used in all 

the convolutional layers in the CNN as well as in all the dense layers. The model was 

trained for 28 epochs with an early stopping of 10 epochs patience. The architecture of 

the concrete dropout 1D-CNN with the shaded neurons indicating neurons not active is 

shown in Figure 3. 
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Figure 3. Concrete dropout 1D-CNN model architecture 
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CONCRETE DROPOUT ANN 

A 3-hidden-layered ANN was also used in this study with 30, 60 and 30 neurons for each 

layer respectively. The same learning rate, optimizer and loss function as the 1D-CNN 

was used in the ANN model and training was completed at 99 epochs with early stopping. 

The same architecture and hyper-parameter were used for both deterministic and concrete 

dropout networks. The concrete dropout method, allows the dropout to be included in the 

convolution layers as well, while no dropout was added to the deterministic model. The 

MLP model was trained and tuned using hyper-opt [8], a Bayesian optimization library 

that directs its optimal hyper-parameter search in the direction of reducing loss function 

based on past trials which makes it more efficient than random search and grid search 

optimizations. Figure 4 shows the model architecture of the concrete dropout ANN 

model. The dark shaded neurons observed in Figure 4 shows the neurons turned off 

dynamically in the concrete dense layers during the particular forward pass through the 

network. 

Input layer
Concretedense

dropout + 

LeakyReLU

Output layer

Concretedense

dropout + 

LeakyReLU

Concretedense

dropout + 

LeakyReLU

 

Figure 4. Concrete dropout ANN model architecture 

 

A forward pass through the network of 100 was chosen for both the concrete dropout 

ANN and CNN models as experimentation with a higher number of network sweeps did 

not produce significant positive change in the model performance, and for each 

prediction, the mean was computed. The CPU time for the 100-forward pass was less than 

2 minutes for both models.   

 

MODEL EVALUATION 

This study chose the coefficient of determination (R2), root mean squared error (RMSE), 

mean squared error (MSE) and MAE for the general model performance [2, 4].  
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1.  Mean Absolute Error (MAE) 

This is the average of the absolute difference between what the model predicts and the 

actual values of the DTS. Low values of MAE therefore imply that the model is 

performing well in its prediction and its unit is the same as that of the predictor DTS 

(us/hr). The predicted values of the model will lie within 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −𝑀𝐴𝐸 ≤
𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≤ 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 +𝑀𝐴𝐸 
 

𝑀𝐴𝐸 =
1

𝑁
∑|𝐷𝑇𝑆𝑖 − 𝐷𝑇𝑆𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑁

𝑖=1

                   (1) 

where N is the number of observations. 

2. Root Mean Squared Error (RMSE) 

It is the square root of the average of the square of residuals. An RMSE of zero (0) 

indicates a perfect fit. Low values indicate good model performance and therefore 

predictions.  
 

𝑅𝑀𝑆𝐸 = √∑ (𝐷𝑇𝑆𝑖 − 𝐷𝑇𝑆𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2𝑁

𝑖=1

𝑁
                   (2) 

3. Coefficient of Determination (R2) 

This regression metric measures the goodness of the fit of the model predictions to the 

actual values of the DTS. The better the fit, the closer the value to one (1), with zero 

indicating no fit. It explains the extent to which the variance in one variable is explained 

by the second variable’s variance.  
 

𝑅2 =
∑ (𝐷𝑇𝑆𝑖 − 𝐷𝑇𝑆𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑁
𝑖=1

∑ (𝐷𝑇𝑆𝑖 − 𝐷𝑇𝑆𝑚𝑒𝑎𝑛)2
𝑁
𝑖=1

                   (3) 

4. Mean Absolute Percentage Error (MAPE) 

This metric describes how off the prediction is from the actual values in percentages. A 

lower value closer to 0 indicates better prediction and a higher value means an increasing 

margin between actual and predicted values. 
 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝐷𝑇𝑆𝑖 − 𝐷𝑇𝑆𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝐷𝑇𝑆𝑖

𝑁

𝑖=1

                   (4) 

 

RESULTS AND DISCUSSION  

The addition of concrete dropout to a neural network architecture allows the selective 

turning off of the neurons in the layers of the neural network structure in Table 3. The 

100 forward pass through the network produced different results with the mean of these 

model predictions computed to give the results of the concrete dropout versions of the 

CNN and ANN models in Table 4. The deterministic ANN and CNN models as well as 

the optimized MLP model are also shown in Table 4.  
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Table 4. Prediction performance of each model 
  

Deterministic 

CNN 

Concrete 

Dropout 

CNN 

Deterministic 

ANN 

Concrete 

Dropout 

ANN 

MLP 

Train 

  

  

  

R2 0.8823 0.8950 0.9092 0.9301 0.9189 

RMSE 5.7781 5.6594 5.2994 4.7160 5.1297 

MAE 3.9220 3.8457 3.5089 3.0363 3.3731 

MAPE 0.0287 0.0284 0.0258 0.0225 0.0247 

Blind data 

  

  

  

R2 0.9165 0.9359 0.9410 0.9548 0.9409 

RMSE 4.5830 4.1575 4.1222 3.6415 4.2840 

MAE 3.2355 2.9378 2.9770 2.4433 2.9118 

MAPE 0.0235 0.0216 0.0217 0.0179 0.0213 

 

LEARNING AND PREDICTIVE PERFORMANCE OF CONCRETE DROPOUT 

CNN MODEL 

Experimentation with the CNN model’s parameters resulted in the training performance 

in Table 4. Deterministic CNN’s prediction on blind data showed that the model learned 

the data as it could better predict the shear sonic log of the blind well. No dropout was 

applied to both the deterministic ANN and CNN models. The addition of concrete dropout 

increased the learning from 0.8823 in the deterministic case to 0.8950 in the concrete 

dropout case showing only a slight increase in learning compared to the deterministic 

CNN model scoring. However, this slight improvement produced a higher performance 

on the blind data thus signifying that it allowed the network to have better learning by 

turning off some of the neurons in the network thus preventing overfitting and leading to 

higher model improvement.  

 

LEARNING AND PREDICTIVE PERFORMANCE OF CONCRETE DROPOUT 

ANN MODEL 

The ANN model was built by experimentation with its hyper-parameters in Table 3. 

Compared to both the deterministic and concrete dropout CNN, the deterministic ANN 

model’s performance on the training data achieves a 0.9092 R2 score, outperforming even 

the concrete dropout CNN. ANN’s model’s prediction on blind data also had a higher 

performance of 0.9410 R2 score. This performance exceeds that achieved by both the 

deterministic and concrete dropout CNN models. This performance increase could be 

attributed to the fact that the deterministic ANN architecture is better suited for the 

problem than the CNN model as both networks employed the same learning rate, loss 

metric and optimizer with the only difference being the number of dense layers and 

neurons. Retaining the same architecture, with the addition of concrete dropout to the 

ANN model, the concrete dropout ANN model showed a very pronounced increase in the 

model's learning, scoring an R2 score of 0.9301 compared to the 0.9092 achieved in the 

deterministic ANN. Its prediction on the blind well had an RMSE of 3.6415, a notable 

decrease from the 4.716 recorded during the training. This shows that the model is not 

overfitting the training data but is able to generalize better to the blind validation data. 
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In comparison with the RMSE values of 4.5830, 4.1575 and 4.122 us/ft (microseconds 

per foot) recorded in the deterministic CNN, concrete dropout CNN and deterministic 

ANN respectively, RMSE of 3.6415 recorded in the concrete dropout ANN is a better 

performance. This showed that the addition of concrete dropout on a deterministic neural 

network architecture improves the model’s learning performance as well as enhances its 

predictive capabilities.  

 

COMPARISON WITH OPTIMISED MLP MODEL 

The built ANN and CNN models were compared with a Bayesian optimized multilayer 

perceptron model using the hyper-opt library. The MLP model showed better learning on 

the training data compared with all the models except the concrete dropout ANN. 

Although the perceptron is a simple neural network with 2 hidden layers, it showed better 

learning than a deterministic deep ANN of 3 layers, it can be deduced that although the 

addition of concrete dropout improves model performance, as well as generalization, the 

model’s overall predictive performance depends on the appropriate model chosen for the 

task.  

The addition of the concrete dropout investigated in this study only serves to boost the 

performance of a model. The choice of an appropriate deterministic model must still be 

made first. This is evident from the fact that although simple, the optimized MLP model 

outperformed the deterministic CNN, concrete dropout CNN and deterministic ANN in 

both learning and blind prediction. The concrete dropout ANN model, however, 
outperformed the MLP model in all evaluation metrics investigated with an MAE of 

2.4433 us/ft (microseconds per foot) compared to 2.9118 us/ft (microseconds per foot) 

indicating lower error during prediction.  

 

IMPACT OF CONCRETE DROPOUT ON TRAINING EPOCH OF BOTH 

MODELS 

An interesting observation was that in the ANN case, the deterministic ANN network 

took 16 epochs to produce 0.9410 while with concrete dropout added, the same neural 

network took 99 epochs to train. The number of epochs from the findings of this study 

varied based on the neural network architecture, as deterministic CNN at 27 epochs had 

an R2 of 0.9165 compared to the R2 of 0.9359 achieved by the concrete dropout CNN at 

28 epochs. Although the addition of concrete dropout was seen to increase training 

epochs, this is likely because longer epochs have been positively correlated with better 

model learning in capturing the relationship in the data. In this study, the concrete dropout 

addition to both the dense and convolutional layers of the CNN model produced improved 

model performance this is in opposition to the study by [11], who applied a variant called 

Monte Carlo dropout to convolution layers and reported negative performance. 

 

SIGNIFICANCE OF THE FINDINGS 

The findings of the study are significant in two major ways. It is proven to enhance a 

neural network's prediction and learning capability. This is because it automatically 

adapts the dropout rate of all layers to a value depending on the data. It also boosts 
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performance because, at inference, it generates different output predictions for each 

forward pass through the network. As for the number of forward passes through the 

network, experimentation with 1000 iterations did not yield significant improvement over 

a 100 forward pass. The 100 forward pass generated 100 different model predictions and 

the mean value was computed. This makes the network’s prediction more trustworthy and 

robust.  

It is also significant in that it can be applied in real-time for shear sonic log prediction. In 

the traditional sense, models deployed in real-time are trained only on the training data, 

all other input data within or outside the range of training data can affect the model’s 

performance. Although neural networks are great interpolators, when given data outside 

the range of training data, it might output poor predictions, leading to the model needing 

to be re-trained before re-deployment. The concrete dropout ANN models can adapt the 

dropout rate to the characteristics of the data at inference, selectively shutting off neurons 

to prevent overfitting and to better model the data. 

Plots of the prediction performance of the deterministic and concrete dropout networks 

can be observed in Figure 5 and 6. In Figure 7, the optimized MLP model built using all 

training data with a 3-fold cross-validation is shown. The model although able to model 

the variation in the shear sonic log profile, struggles to do so in the shallow part of the 

log. This is improved in the concreted dropout ANN model. 

 

 

(a) 

 

(b) 

Figure 5. Comparison of CNN model results.                                                                                             

(a) Deterministic CNN model, (b) Concrete Dropout CNN model 
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(a) 

 

(b) 

Figure 6. Comparison of ANN model results.                                                                                                              

(a) Deterministic ANN model, (b) Concrete Dropout ANN model 

 

Figure 7. Multilayer Perceptron Model results 

 

EXPERIMENTATION WITH LENGTH SCALE AND MODEL PRECISION 

CONCRETE DROPOUT HYPERPARAMETERS 

The concrete dropout model architecture has two major hyper-parameters: length scale l 

and model precision 𝜏. These parameters affect the model's performance and refer to the 

assumption about the data characteristics. Experimentation with these parameters is 

shown in Table 5. From the findings, for the concrete dropout CNN model, setting l = e-

2 and 𝜏 = 1 produced the best model performance. Setting the length scale to higher 

values showed a predictive performance decline in the CNN model which was made 

worse by setting 𝜏 = 2, with performance less than that seen in the deterministic CNN 

model. Varying both parameters, it can be deduced that increasing the length scale doesn’t 

translate to higher model performance.  
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The concrete dropout ANN model however shows a fluctuating performance at increasing 

length scale and model precision, recording a high performance of 0.9501 at 𝜏 = 2 and l 

= e-2 and a low performance of 0.8909 at 𝜏 = 1 and l = e-3. The hyper-parameter range 

investigated in this study revealed that the best values for optimum performance for both 

CNN and ANN models were found to be 𝜏 = 1 and l = e-2. These values are the same as 

those recommended by [17]. These values produced better performance in this study 

regardless of the difference in data used for training.  

 

Table 5. Manual experimentation for both length scale and model precision parameters 

𝜏 = 1 Concrete dropout CNN Concrete dropout ANN 

  𝒍 = 𝒆−𝟏 𝒍 = 𝒆−𝟐 𝒍 = 𝒆−𝟑 𝒍 = 𝒆−𝟒 𝒍 = 𝒆−𝟏 𝒍 = 𝒆−𝟐 𝒍 = 𝒆−𝟑 𝒍 = 𝒆−𝟒 

Train R2 0.8905 0.8950 0.8760 0.8679 0.9014 0.9301 0.8867 0.9184 

RMSE 5.8290 5.6594 5.9263 6.1506 5.3815 4.7160 7.6195 5.0167 

MAE 4.0638 3.8457 4.0632 4.2807 3.4631 3.0363 4.6277 3.2301 

MAPE 0.0300 0.0284 0.0298 0.0316 0.0254 0.0225 0.0311 0.0237 

Blind 

data 
R2 0.9328 0.9359 0.9202 0.9066 0.9351 0.9548 0.8909 0.9450 

RMSE 4.3158 4.1575 4.4782 4.8759 4.1706 3.6415 7.3037 3.8866 

MAE 3.0953 2.9378 3.1473 3.5071 2.8702 2.4433 4.3392 2.6428 

MAPE 0.0227 0.0216 0.0229 0.0256 00212 0.0179 0.0282 0.0192 

𝜏 = 2 Concrete dropout CNN Concrete dropout ANN 

  𝒍 = 𝒆−𝟏  𝒍 = 𝒆−𝟐 𝒍 = 𝒆−𝟑 𝒍 = 𝒆−𝟒 𝒍 = 𝒆−𝟏 𝒍 = 𝒆−𝟐 𝒍 = 𝒆−𝟑 𝒍 = 𝒆−𝟒 

Train R2 0.8642 0.8312 0.8413 0.8279 0.9022 0.8886 0.9296 0.9067 

RMSE 6.1319 6.5962 6.4207 6.6278 5.3010 5.5184 4.9198 5.7596 

MAE 4.1614 4.5189 4.3964 4.5791 3.3889 3.5659 3.2170 3.8021 

MAPE 0.0306 0.0328 0.0321 0.0335 0.0248 0.0259 0.0238 0.0279 

Blind 

data 

R2 0.9152 0.8699 0.8966 0.8753 0.9389 0.9225 0.9501 0.9481 

RMSE 4.5521 5.4781 4.9033 5.3641 3.9873 4.3829 3.9857 4.076 

MAE 3.1975 3.8629 3.4523 3.833 2.6300 2.9710 2.900 2.8595 

MAPE 0.0232 0.0277 0.0249 0.0276 0.0191 0.0216 0.0213 0.0208 

 

CONCLUSIONS 

In this work, we demonstrated the application of concrete dropout to both CNN and ANN 

models for shear sonic log prediction and compared their performance to the same 

network models built without dropout layers added. From the results obtained, it can be 

concluded that the addition of concrete dropout to the initial deterministic architecture 
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improves the overall predictive performance of the models over its deterministic type as 

it leads to better training and enhanced prediction on blind data.  

The concrete dropout ANN model in comparison with an optimized MLP model, 

deterministic models and the concrete dropout CNN was found to better model the shear 

sonic log profile in all evaluation metrics. The deterministic ANN model was also 

observed to perform better than the concrete dropout CNN model. This leads to the 

conclusion that although the addition of concrete dropout leads to significant 

improvement in a model’s performance, a model coupled with concrete dropout will not 

always outperform other models on the same data. The appropriate model for the data 

must still be firstly chosen, before applying the concrete dropout to boost its performance.  

The concrete dropout ANN investigated in this study can be applied in model deployment, 

as the dropout rate in traditional neural network models is fixed depending only on 

training data, the dropout rates are allowed to be learnt and dynamically adapted to even 

new data at prediction time allowing the model to be more robust and perform better as it 

selects the dropout for each layer based on the data.  

It is recommended that a more comprehensive search be carried out to investigate the full 

effect of the length scale and model precision parameters on the data and performance of 

the models. In addition to boosting the performance of neural networks, the concrete 

dropout architecture also allows the quantification of epistemic and aleatoric uncertainty 

as it outputs a distribution rather than point estimates, this is an aspect that will be 

investigated in a subsequent paper.  
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