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ABSTRACT 

The fulfillment of programmed tasks by industrial robots in redundant conditions occurs 

when a robotic system has more degrees of freedom than would be necessary to 

accomplish the task. From the point of view of mechanical modeling of robotic 

structures, this translates into the fact that the number of motor coordinates of the robot 

is greater than would be necessary and sufficient to ensure the position and orientation 

of the robot's end effector required by the task. In such situations, there is the possibility 

of optimally performing the programmed task under the conditions of meeting certain 

criteria that may refer to better accessibility of the robot's workspace in the presence of 

obstacles, achieving a minimum in terms of movements at the level of the robot's motor 
axes or obtaining motor coordinate values as far as possible from the edges of their 

variation ranges. The paper analyzes the case of a robot with five rotation modules 

whose task is to ensure a trajectory imposed at the origin of the coordinate system 

attached to its end effector. The redundancy case is analyzed by imposing as an 

optimization criterion the achievement of a minimum of displacements at the motor 

axes level of the analyzed robot. Finally, the results obtained for the variation of motor 

coordinates in the case of a linear interpolation of the end effector movement are 

presented. 

Keywords: robot, degree of freedom, redundancy, optimal functioning, movement 

interpolation 

 

INTRODUCTION 

The analysis of mechanisms in general and of the active ones in the structure of 

industrial robots always remains a current subject of study [1-14]. Mechanical modeling 

of these mechanisms is necessary to ensure proper functioning in view of meeting 

certain optimization criteria [15-29]. In the practice of using robotic systems in various 

industrial applications, situations frequently arise in which the robot possesses more 

degrees of freedom than would be necessary and sufficient to perform a certain task. 

These situations correspond to cases of redundancy in which there is the possibility that 

the robot meets certain optimization criteria in performing the programmed task. These 
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criteria may refer to better accessibility of the robot's workspace in the presence of 

obstacles, achieving a minimum in terms of movements at the level of the robot's motor 

axes or obtaining motor coordinate values as far as possible from the edges of their 

variation ranges.  

In this paper it is analyzed the case of a robot with five degrees of freedom whose task 

is to ensure a trajectory imposed at the origin of the coordinate system attached to its 

end effector. The redundancy case is analyzed by imposing as an optimization criterion 

the achievement of a minimum of displacements at the motor axes level of the analyzed 

robot. Finally, the results obtained with a program developed by the authors using 

Maple [30] present the variation of the motor coordinates in the case of a linear 

interpolation of the end effector movement. The methodology for generating the inverse 

geometric model in the redundancy case studied, as well as the simulator developed by 

the authors has a novelty character, offering the possibility of analyzing also other 

optimization criteria than the one presented.  

 

MATERIALS AND METHODS 

The robotic mechanism presented in figure 1 has five rotation modules. 

5,0),( izyxO iiii , are attached to the modules 5,1  and to the base of the mechanism. 

The matrices 5,1,1  iRi

i , are as follows:  
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where: 54321 ,,,, qqqqq  are the motors coordinates. 

The position of the characteristic point TO  (figure 1) relative to )( 0000 zyxO  can be 

determined as follows: 
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Figure 1. Robotic mechanism with five rotation modules  

 

We considered that a linear movement of the point TO  has to be generated. The 

trajectory followed was discretized into a number n of intermediate positions, equally 

spaced between them. The coordinates of TO  in these positions may be determined as 

follows: 
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where: 
iTO  and 

fTO  are the initial and the final position, respectively, of the point TO .  

The variation of the motors coordinates, grouped in the vector 

 Tqqqqqq 54321 , has been determined iteratively with the relationship: 

 )()1())(()()1( 00 kOOkOOkqJkqkq TT  
 (4) 

where: 
J  is the pseudo-inverse [12] corresponding to the robot’s mechanism: 

  1  TT JJJJ  (5) 
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where: J is the jacobean matrix: 
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The values of the motor coordinates for 1k  were numerically calculated by solving 

the system of equations (2) when: 
iTT OOOO 0

)0(

0

)0(   and by imposing for the motor 

coordinates 4q  and 5q  certain values in their range of variation. 

Relation (4) allows the determination of the variation of the motor coordinates that 

ensures the achievement of a minimum of displacements at the motor axes level of the 

analyzed robot. 

 

RESULTS AND DISCUSSIONS  

A simulator has been developed by the authors using Maple [26]. The parameters 

involved in calculations have been considered with the following values: m5.11 l ; 

m7.02 l ; m45.03 l ; m35.04 l ; m25.05 l ; 

 TTi
OO 75.045.03.00

)0(  ;  TT f
OO 9.075.045.00

)0(  ; 

The values obtained for 21, qq  and 3q , when: 
iTT OOOO 0

)0(

0

)0(  , by imposing: 
304 q  

and 605 q , for one of the robot's working configurations, are as follow: 

rad942.01 q ; rad238.02 q  and rad112.23 q .  

The number n of intermediate positions used in simulations has been considered equal 

to 50. The obtained variation curves of 4321 ,,, qqqq  and 5q , depending on position(k) 

(k=1,2,…,n) on the segment traveled by TO , are presented below. 

 

Figure 2. The variation curve of the motor coordinate 1q  
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Figure 3. The variation curve of the motor coordinate 2q  

 

 

Figure 4. The variation curve of the motor coordinate 3q  

 

 

Figure 5. The variation curve of the motor coordinate 4q  
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Figure 6. The variation curve of the motor coordinate 
5q  

 

The variation curves of 5,1, iqi , highlight a continuous variation of them, without 

presenting sudden variations that will lead to improper operation of the robot. The 

following values for the angular displacements at the motors axes level have been 

obtained: 10.3281 q ; 11.1432 q ; 12.8313 q ; 1.3104 q  and 3.6615 q . 

 

CONCLUSIONS 

Optimizing the functioning of industrial robots in performing different tasks can be 

related to several aspects that can look at the obstacles in the workspace, minimal 

energy consumption, avoiding singular configurations during operation, providing 

positions at the motor axes as far as the race limiters, ensuring a higher manipulability, 

etc. This problem becomes more current in the case of the appearance of redundancy 

when the robot has more degrees of freedom than would be necessary and sufficient to 

ensure the position and orientation imposed on the operational level. A way of treating 

problems in this case makes the use of the differential model of the robot and its pseudo 

inverse matrix. The numerical simulations in this case involve a large number of 

calculations, which is why the use of programs that include packages of symbolic 

calculation functions is indicated. In this paper it was analyzed the case of a robot with 

five degrees of freedom whose task was to ensure a trajectory imposed at the origin of 

the coordinate system attached to its end effector. The redundancy was analyzed by 

imposing as an optimization criterion the achievement of a minimum of displacements 

at the motor axes level of the analyzed robot. The results obtained with a program 

developed by the authors using Maple present the variation of motors coordinates in the 

case of a linear interpolation of the end effector movement. The obtained variation 

curves of the motors coordinates highlight a continuous variation of them, without 

presenting sudden variations that will lead to improper operation of the robot. It is also 

mentioned that the methodology generating the inverse geometric model in the 

redundancy case studied and the simulator developed by the authors offer the possibility 

of analyzing also other optimization criteria than the one presented.  
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